42  Bibliography

Abadie, Alberto, Susan Athey, Guido W Imbens, and Jeffrey M Wooldridge. 2022. “When Should You Adjust Standard Errors for Clustering?*.” The Quarterly Journal of Economics 138 (1): 1–35. https://doi.org/10.1093/qje/qjac038.
Abramson, Scott F, Korhan Kocak, Asya Magazinnik, and Anton Strezhnev. 2024. “Detecting Preference Cycles in Forced-Choice Conjoint Experiments.” SocArXiv. https://doi.org/10.31235/osf.io/xjre9.
Alexander, Rohan. 2023. Telling Stories with Data: With Applications in r. Chapman; Hall/CRC.
Angelopoulos, Anastasios N., and Stephen Bates. 2022. “A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification.” arXiv. https://doi.org/10.48550/arXiv.2107.07511.
Angrist, Joshua D, and Jörn-Steffen Pischke. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton university press.
Arel-Bundock, Vincent, Noah Greifer, and Andrew Heiss. 2024. “How to Interpret Statistical Models Using marginaleffects for R and Python.” Journal of Statistical Software 111 (9): 1–32. https://doi.org/10.18637/jss.v111.i09.
Aronow, Peter M., and Benjamin T. Miller. 2019. Foundations of Agnostic Statistics. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316831762.
Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software 67 (1): 1–48. https://doi.org/10.18637/jss.v067.i01.
Békés, Gábor, and Gábor Kézdi. 2021. Data Analysis for Business, Economics, and Policy. Cambridge, UK: Cambridge University Press. https://www.gabors-data-analysis.com.
Berger, Roger, and George Casella. 2024. Statistical Inference. 2nd ed. CRC Press.
Bischl, Bernd, Raphael Sonabend, Lars Kotthoff, and Michel Lang, eds. 2024. Applied Machine Learning Using Mlr3 in r. 1st ed. USA: Chapman; Hall/CRC.
Brambor, Thomas, William Roberts Clark, and Matt Golder. 2006. “Understanding Interaction Models: Improving Empirical Analyses.” Political Analysis 14 (1): 63–82.
Brooks, Mollie E., Kasper Kristensen, Koen J. van Benthem, Arni Magnusson, Casper W. Berg, Anders Nielsen, Hans J. Skaug, Martin Maechler, and Benjamin M. Bolker. 2017. glmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling.” The R Journal 9 (2): 378–400. https://doi.org/10.32614/RJ-2017-066.
Bürkner, Paul C. 2024. The Brms Book: Applied Bayesian Regression Modelling Using r and Stan. Chapman; Hall/CRC. https://paulbuerkner.com/software/brms-book.
Cameron, A Colin, and Pravin K Trivedi. 2005. Microeconometrics: Methods and Applications. Cambridge university press.
Chatton, Arthur, and Julia M. Rohrer. 2024. “The Causal Cookbook: Recipes for Propensity Scores, g-Computation, and Doubly Robust Standardization.” Advances in Methods and Practices in Psychological Science 7 (1): 25152459241236149. https://doi.org/10.1177/25152459241236149.
Cinelli, Carlos, Andrew Forney, and Judea Pearl. 2024. “A Crash Course in Good and Bad Controls.” Sociological Methods & Research 53 (3): 1071–1104.
Clark, William Roberts, and Matt Golder. 2023. Interaction Models: Specification and Interpretation. Methodological Tools in the Social Sciences. Cambridge University Press.
Ding, Tiffany, Anastasios N. Angelopoulos, Stephen Bates, Michael I. Jordan, and Ryan J. Tibshirani. 2023. “Class-Conditional Conformal Prediction with Many Classes.” arXiv. https://doi.org/10.48550/arXiv.2306.09335.
Dowd, Bea E., William H. Greene, and Edward C. Norton. 2014. “Computation of Standard Errors.” Health Services Research 49 (2): 731–50.
Efron, Bradley, and R. J. Tibshirani. 1994. An Introduction to the Bootstrap. New York: Chapman; Hall/CRC. https://doi.org/10.1201/9780429246593.
Fair, Ray C. 1978. “A Theory of Extramarital Affairs.” Journal of Political Economy 86: 45–61.
Finch, W Holmes, Jocelyn E Bolin, and Ken Kelley. 2019. Multilevel Modeling Using r. Chapman; Hall/CRC.
Freedman, David A. 2008. “On Regression Adjustments to Experimental Data.” Advances in Applied Mathematics 40 (2): 180–93.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. 3rd ed. New York: Chapman; Hall/CRC. https://doi.org/10.1201/b16018.
Gelman, Andrew, and Jennifer Hill. 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. 1st ed. Cambridge University Press. http://www.stat.columbia.edu/~gelman/arm/.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.” https://arxiv.org/abs/2011.01808.
Goldsmith-Pinkham, Paul, Peter Hull, and Michal Kolesár. Forthcoming. “Contamination Bias in Linear Regressions.” American Economic Review, Forthcoming.
Greifer, Noah, and Elizabeth A Stuart. 2021. “Choosing the Estimand When Matching or Weighting in Observational Studies.” arXiv e-Prints, arXiv–2106.
Grosz, Michael P, Julia M Rohrer, and Felix Thoemmes. 2020. “The Taboo Against Explicit Causal Inference in Nonexperimental Psychology.” Perspectives on Psychological Science 15 (5): 1243–55.
Hainmueller, Jens, Daniel Hopkins, and Teppei Yamamoto. 2014. “Causal Inference in Conjoint Analysis: Understanding Multi-Dimensional Choices via Stated Preference Experiments.” Political Analysis 22 (1): 1–30.
Hainmueller, Jens, Jonathan Mummolo, and Yiqing Xu. 2019. “How Much Should We Trust Estimates from Multiplicative Interaction Models? Simple Tools to Improve Empirical Practice.” Political Analysis 27 (2): 163–92.
Hansen, Bruce. 2022a. Econometrics. 1st ed. Princeton, NJ: Princeton University Press.https://press.princeton.edu/books/hardcover/9780691223248/econometrics .
———. 2022b. Probability and Statistics for Economists. 1st ed. Princeton, NJ: Princeton University Press. https://press.princeton.edu/books/hardcover/9780691235899/probability-and-statistics-for-economists .
Hansen, S. N., and M. Overgaard. 2024. “Variance Estimation for Average Treatment Effects Estimated by g-Computation.” Metrika. https://doi.org/10.1007/s00184-024-00962-4.
Harrell, Frank. 2021. “Statistical Thinking - Avoiding One-Number Summaries of Treatment Effects for RCTs with Binary Outcomes.” https://www.fharrell.com/post/rdist/.
Heiss, Andrew. 2022. “Marginalia: A Guide to Figuring Out What the Heck Marginal Effects, Marginal Slopes, Average Marginal Effects, Marginal Effects at the Mean, and All These Other Marginal Things Are.” https://doi.org/10.59350/40xaj-4e562.
Hernán, Miguel A. 2018. “The c-Word: Scientific Euphemisms Do Not Improve Causal Inference from Observational Data.” American Journal of Public Health 108 (5): 616–19.
Hernán, Miguel A, and James M Robins. 2020. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.
Hill, Jennifer, George Perrett, Stacey Hancock, Le Win, and Yoav Bergner. 2024. “Causal Language and Statistics Instruction: Evidence from a Randomized Experiment.” STATISTICS EDUCATION RESEARCH JOURNAL 23 (1). https://doi.org/10.52041/serj.v23i1.673.
Hodges, James S. 2021. Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects. 1st ed. Chapman & Hall.
Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020. Palmerpenguins: Palmer Archipelago (Antarctica) Penguin Data. https://doi.org/10.5281/zenodo.3960218.
Hyndman, Rob J, and George Athanasopoulos. 2018. Forecasting: Principles and Practice. OTexts.
Imai, Kosuke, Luke Keele, Dustin Tingley, and Teppei Yamamoto. 2011. “Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies.” American Political Science Review 105 (4): 765–89.
Imbens, Guido W, and Donald B Rubin. 2015. Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge university press.
Imbens, Guido W, Donald B Rubin, and Bruce I Sacerdote. 2001. “Estimating the Effect of Unearned Income on Labor Earnings, Savings, and Consumption: Evidence from a Survey of Lottery Players.” American Economic Review 91 (4): 778–94.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. An Introduction to Statistical Learning: With Applications in r. Second Edition. Springer. https://www.springer.com/gp/book/9781071614174.
———. 2023. An Introduction to Statistical Learning: With Applications in Python. 2023rd ed. USA: Springer Nature.
Kahneman, Daniel, and Amos Tversky. 1979. “Prospect Theory: An Analysis of Decision Under Risk.” Econometrica 47 (2): 263–91. http://www.jstor.org/stable/1914185.
Kam, Cindy D., and Robert J. Franzese Jr. 2009. Modeling and Interpreting Interactive Hypotheses in Regression Analysis. University of Michigan Press. https://doi.org/10.3998/mpub.206871.
Keele, Luke, Randolph T. Stevenson, and Felix Elwert. 2020. “The Causal Interpretation of Estimated Associations in Regression Models.” Political Science Research and Methods 8 (1): 1–13. https://doi.org/10.1017/psrm.2019.31.
King, Gary, Michael Tomz, and Jason Wittenberg. 2000. “Making the Most of Statistical Analyses: Improving Interpretation and Presentation.” American Journal of Political Science, 347–61.
Krinsky, I., and A. L. Robb. 1986. “On Approximating the Statistical Properties of Elasticities.” Review of Economics and Statistics 68 (4): 715–19.
Kuhn, Max, and Julia Silge. 2022. Tidy Modeling with r: A Framework for Modeling in the Tidyverse. 1st ed. USA: O’Reilly Media.
Lakens, Daniël, Anne M Scheel, and Peder M Isager. 2018. “Equivalence Testing for Psychological Research: A Tutorial.” Advances in Methods and Practices in Psychological Science 1 (2): 259–69.
Leeper, Thomas J., Sara B. Hobolt, and James Tilley. 2020. “Measuring Subgroup Preferences in Conjoint Experiments.” Political Analysis 28 (2): 207–21. https://doi.org/10.1017/pan.2019.30.
Lenth, Russell V. 2024. emmeans: Estimated Marginal Means, Aka Least-Squares Means. https://cran.r-project.org/package=emmeans.
Lin, Winston. 2013. “Agnostic Notes on Regression Adjustments to Experimental Data: Reexamining Freedman’s Critique.” Annals of Applied Statistics 7 (1): 295–318. https://doi.org/10.1214/12-AOAS583.
Lundberg, Ian, Rebecca Johnson, and Brandon M. Stewart. 2021. “What Is Your Estimand? Defining the Target Quantity Connects Statistical Evidence to Theory.” American Sociological Review 86 (3): 532–65. https://doi.org/10.1177/00031224211004187.
McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course with Examples in r and STAN. 2nd ed. New York: Chapman; Hall/CRC. https://doi.org/10.1201/9780429029608.
McKinney, Wes. 2022. Python for Data Analysis. " O’Reilly Media, Inc.".
Morgan, Stephen L, and Christopher Winship. 2015. Counterfactuals and Causal Inference. Cambridge University Press.
Nickerson, Raymond S. 2004. Cognition and Chance: The Psychology of Probabilistic Reasoning. 1st ed. Psychology Press. https://doi.org/10.4324/9781410610836.
Ornstein, Joseph T. 2023. “Getting the Most Out of Surveys: Multilevel Regression and Poststratification.” In Causality in Policy Studies: A Pluralist Toolbox, edited by Alessia Damonte and Fedra Negri, 99–122. Springer. https://doi.org/10.1007/978-3-031-12982-7_5.
Pearl, Judea. 2009. Causality. Cambridge university press.
———. 2014. “Interpretation and Identification of Causal Mediation.” Psychological Methods 19 (4): 459–81. https://doi.org/10.1037/a0036434.
Pearl, Judea, and Dana Mackenzie. 2018. The Book of Why: The New Science of Cause and Effect. Basic books.
Pedersen, Thomas Lin. 2024. Patchwork: The Composer of Plots. https://patchwork.data-imaginist.com.
Pustejovsky, James. 2023. clubSandwich: Cluster-Robust (Sandwich) Variance Estimators with Small-Sample Corrections. https://CRAN.R-project.org/package=clubSandwich.
Qu, Y., and J. Luo. 2015. “Estimation of Group Means When Adjusting for Covariates in Generalized Linear Models.” Pharmaceutical Statistics 14 (1): 56–62. https://doi.org/10.1002/pst.1741.
Rainey, Carlisle. 2014. “Arguing for a Negligible Effect.” American Journal of Political Science 58 (4): 1083–91.
———. 2024. “A Careful Consideration of CLARIFY: Simulation-Induced Bias in Point Estimates of Quantities of Interest.” Political Science Research and Methods 12 (3): 614–23. https://doi.org/10.1017/psrm.2023.8.
Thornton, Rebecca L. 2008. “The Demand for, and Impact of, Learning HIV Status.” American Economic Review 98 (5): 1829–63.
Tukey, John W. 1977. Exploratory Data Analysis. Reading, MA: Addison-Wesley.
Wasserman, Larry. 2004. All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics. New York, NY: Springer. https://doi.org/10.1007/978-0-387-21736-9.
———. 2006. All of Nonparametric Statistics. Springer Texts in Statistics. New York, NY: Springer.
Wellek, Stefan. 2010. Testing Statistical Hypotheses of Equivalence and Noninferiority. CRC Press. https://www.taylorfrancis.com/books/mono/10.1201/EBK1439808184/testing-statistical-hypotheses-equivalence-noninferiority-stefan-wellek .
Westreich, Daniel, and Sander Greenland. 2013. “The Table 2 Fallacy: Presenting and Interpreting Confounder and Modifier Coefficients.” American Journal of Epidemiology 177 (4): 292–98. https://doi.org/10.1093/aje/kws412.
Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. 2023. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. 2nd ed. Sebastopol, CA: O’Reilly Media. https://www.amazon.ca/dp/1492097403.
Wood, Simon N. 2017. Generalized Additive Models: An Introduction with r. 2nd ed. Boca Raton, FL: Chapman; Hall/CRC.
Zeileis, Achim, Susanne Köll, and Nathaniel Graham. 2020. “Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R.” Journal of Statistical Software 95 (1): 1–36. https://doi.org/10.18637/jss.v095.i01.
Zhao, Jinhui, Tim Stockwell, Tim Naimi, Sam Churchill, James Clay, and Adam Sherk. 2023. Association Between Daily Alcohol Intake and Risk of All-Cause Mortality: A Systematic Review and Meta-analyses.” JAMA Network Open 6 (3): e236185–85. https://doi.org/10.1001/jamanetworkopen.2023.6185.