42 Bibliography
Abadie, Alberto, Susan Athey, Guido W Imbens, and Jeffrey M Wooldridge.
2022. “When Should You Adjust Standard Errors for
Clustering?*.” The Quarterly Journal of Economics 138
(1): 1–35. https://doi.org/10.1093/qje/qjac038.
Abramson, Scott F, Korhan Kocak, Asya Magazinnik, and Anton Strezhnev.
2024. “Detecting Preference Cycles in Forced-Choice Conjoint
Experiments.” SocArXiv. https://doi.org/10.31235/osf.io/xjre9.
Alexander, Rohan. 2023. Telling Stories with Data: With Applications
in r. Chapman; Hall/CRC.
Angelopoulos, Anastasios N., and Stephen Bates. 2022. “A Gentle
Introduction to Conformal Prediction and Distribution-Free Uncertainty
Quantification.” arXiv. https://doi.org/10.48550/arXiv.2107.07511.
Angrist, Joshua D, and Jörn-Steffen Pischke. 2009. Mostly Harmless
Econometrics: An Empiricist’s Companion. Princeton university
press.
Arel-Bundock, Vincent, Noah Greifer, and Andrew Heiss. 2024. “How
to Interpret Statistical Models Using marginaleffects for R and
Python.” Journal of Statistical Software
111 (9): 1–32. https://doi.org/10.18637/jss.v111.i09.
Aronow, Peter M., and Benjamin T. Miller. 2019. Foundations of
Agnostic Statistics. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316831762.
Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015.
“Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical
Software 67 (1): 1–48. https://doi.org/10.18637/jss.v067.i01.
Békés, Gábor, and Gábor Kézdi. 2021. Data Analysis for Business,
Economics, and Policy. Cambridge, UK: Cambridge University Press.
https://www.gabors-data-analysis.com.
Berger, Roger, and George Casella. 2024. Statistical Inference.
2nd ed. CRC Press.
Bischl, Bernd, Raphael Sonabend, Lars Kotthoff, and Michel Lang, eds.
2024. Applied Machine Learning Using Mlr3 in r. 1st ed. USA:
Chapman; Hall/CRC.
Brambor, Thomas, William Roberts Clark, and Matt Golder. 2006.
“Understanding Interaction Models: Improving Empirical
Analyses.” Political Analysis 14 (1): 63–82.
Brooks, Mollie E., Kasper Kristensen, Koen J. van Benthem, Arni
Magnusson, Casper W. Berg, Anders Nielsen, Hans J. Skaug, Martin
Maechler, and Benjamin M. Bolker. 2017. “glmmTMB Balances Speed and Flexibility Among
Packages for Zero-Inflated Generalized Linear Mixed Modeling.”
The R Journal 9 (2): 378–400. https://doi.org/10.32614/RJ-2017-066.
Bürkner, Paul C. 2024. The Brms Book: Applied Bayesian Regression
Modelling Using r and Stan. Chapman; Hall/CRC. https://paulbuerkner.com/software/brms-book.
Cameron, A Colin, and Pravin K Trivedi. 2005. Microeconometrics:
Methods and Applications. Cambridge university press.
Chatton, Arthur, and Julia M. Rohrer. 2024. “The Causal Cookbook:
Recipes for Propensity Scores, g-Computation, and Doubly Robust
Standardization.” Advances in Methods and Practices in
Psychological Science 7 (1): 25152459241236149. https://doi.org/10.1177/25152459241236149.
Cinelli, Carlos, Andrew Forney, and Judea Pearl. 2024. “A Crash
Course in Good and Bad Controls.” Sociological Methods &
Research 53 (3): 1071–1104.
Clark, William Roberts, and Matt Golder. 2023. Interaction Models:
Specification and Interpretation. Methodological Tools in the
Social Sciences. Cambridge University Press.
Ding, Tiffany, Anastasios N. Angelopoulos, Stephen Bates, Michael I.
Jordan, and Ryan J. Tibshirani. 2023. “Class-Conditional Conformal
Prediction with Many Classes.” arXiv. https://doi.org/10.48550/arXiv.2306.09335.
Dowd, Bea E., William H. Greene, and Edward C. Norton. 2014.
“Computation of Standard Errors.” Health Services
Research 49 (2): 731–50.
Efron, Bradley, and R. J. Tibshirani. 1994. An Introduction to the
Bootstrap. New York: Chapman; Hall/CRC. https://doi.org/10.1201/9780429246593.
Fair, Ray C. 1978. “A Theory of Extramarital Affairs.”
Journal of Political Economy 86: 45–61.
Finch, W Holmes, Jocelyn E Bolin, and Ken Kelley. 2019. Multilevel
Modeling Using r. Chapman; Hall/CRC.
Freedman, David A. 2008. “On Regression Adjustments to
Experimental Data.” Advances in Applied Mathematics 40
(2): 180–93.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. 3rd
ed. New York: Chapman; Hall/CRC. https://doi.org/10.1201/b16018.
Gelman, Andrew, and Jennifer Hill. 2006. Data Analysis Using
Regression and Multilevel/Hierarchical Models. 1st ed. Cambridge
University Press. http://www.stat.columbia.edu/~gelman/arm/.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob
Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian
Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.” https://arxiv.org/abs/2011.01808.
Goldsmith-Pinkham, Paul, Peter Hull, and Michal Kolesár. Forthcoming.
“Contamination Bias in Linear Regressions.” American
Economic Review, Forthcoming.
Greifer, Noah, and Elizabeth A Stuart. 2021. “Choosing the
Estimand When Matching or Weighting in Observational Studies.”
arXiv e-Prints, arXiv–2106.
Grosz, Michael P, Julia M Rohrer, and Felix Thoemmes. 2020. “The
Taboo Against Explicit Causal Inference in Nonexperimental
Psychology.” Perspectives on Psychological Science 15
(5): 1243–55.
Hainmueller, Jens, Daniel Hopkins, and Teppei Yamamoto. 2014.
“Causal Inference in Conjoint Analysis: Understanding
Multi-Dimensional Choices via Stated Preference Experiments.”
Political Analysis 22 (1): 1–30.
Hainmueller, Jens, Jonathan Mummolo, and Yiqing Xu. 2019. “How
Much Should We Trust Estimates from Multiplicative Interaction Models?
Simple Tools to Improve Empirical Practice.” Political
Analysis 27 (2): 163–92.
Hansen, Bruce. 2022a. Econometrics. 1st ed. Princeton, NJ:
Princeton University Press.https://press.princeton.edu/books/hardcover/9780691223248/econometrics
.
———. 2022b. Probability and Statistics for Economists. 1st ed.
Princeton, NJ: Princeton University Press.
https://press.princeton.edu/books/hardcover/9780691235899/probability-and-statistics-for-economists
.
Hansen, S. N., and M. Overgaard. 2024. “Variance Estimation for
Average Treatment Effects Estimated by g-Computation.”
Metrika. https://doi.org/10.1007/s00184-024-00962-4.
Harrell, Frank. 2021. “Statistical Thinking - Avoiding One-Number
Summaries of Treatment Effects for RCTs with Binary Outcomes.” https://www.fharrell.com/post/rdist/.
Heiss, Andrew. 2022. “Marginalia: A Guide to Figuring
Out What the Heck Marginal Effects, Marginal Slopes, Average Marginal
Effects, Marginal Effects at the Mean, and All These Other Marginal
Things Are.” https://doi.org/10.59350/40xaj-4e562.
Hernán, Miguel A. 2018. “The c-Word: Scientific Euphemisms Do Not
Improve Causal Inference from Observational Data.” American
Journal of Public Health 108 (5): 616–19.
Hernán, Miguel A, and James M Robins. 2020. Causal
Inference: What If. Boca
Raton: Chapman & Hall/CRC.
Hill, Jennifer, George Perrett, Stacey Hancock, Le Win, and Yoav
Bergner. 2024. “Causal Language and Statistics Instruction:
Evidence from a Randomized Experiment.”
STATISTICS EDUCATION RESEARCH JOURNAL 23 (1). https://doi.org/10.52041/serj.v23i1.673.
Hodges, James S. 2021. Richly Parameterized Linear Models: Additive,
Time Series, and Spatial Models Using Random Effects. 1st ed.
Chapman & Hall.
Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020.
Palmerpenguins: Palmer Archipelago (Antarctica) Penguin Data.
https://doi.org/10.5281/zenodo.3960218.
Hyndman, Rob J, and George Athanasopoulos. 2018. Forecasting:
Principles and Practice. OTexts.
Imai, Kosuke, Luke Keele, Dustin Tingley, and Teppei Yamamoto. 2011.
“Unpacking the Black Box of Causality: Learning about Causal
Mechanisms from Experimental and Observational Studies.”
American Political Science Review 105 (4): 765–89.
Imbens, Guido W, and Donald B Rubin. 2015. Causal Inference in
Statistics, Social, and Biomedical Sciences. Cambridge university
press.
Imbens, Guido W, Donald B Rubin, and Bruce I Sacerdote. 2001.
“Estimating the Effect of Unearned Income on Labor Earnings,
Savings, and Consumption: Evidence from a Survey of Lottery
Players.” American Economic Review 91 (4): 778–94.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
2021. An Introduction to Statistical Learning: With Applications in
r. Second Edition. Springer. https://www.springer.com/gp/book/9781071614174.
———. 2023. An Introduction to Statistical Learning: With
Applications in Python. 2023rd ed. USA: Springer Nature.
Kahneman, Daniel, and Amos Tversky. 1979. “Prospect Theory: An
Analysis of Decision Under Risk.” Econometrica 47 (2):
263–91. http://www.jstor.org/stable/1914185.
Kam, Cindy D., and Robert J. Franzese Jr. 2009. Modeling and
Interpreting Interactive Hypotheses in Regression Analysis.
University of Michigan Press. https://doi.org/10.3998/mpub.206871.
Keele, Luke, Randolph T. Stevenson, and Felix Elwert. 2020. “The
Causal Interpretation of Estimated Associations in Regression
Models.” Political Science Research and Methods 8 (1):
1–13. https://doi.org/10.1017/psrm.2019.31.
King, Gary, Michael Tomz, and Jason Wittenberg. 2000. “Making the
Most of Statistical Analyses: Improving Interpretation and
Presentation.” American Journal of Political Science,
347–61.
Krinsky, I., and A. L. Robb. 1986. “On Approximating the
Statistical Properties of Elasticities.” Review of Economics
and Statistics 68 (4): 715–19.
Kuhn, Max, and Julia Silge. 2022. Tidy Modeling with r: A Framework
for Modeling in the Tidyverse. 1st ed. USA: O’Reilly Media.
Lakens, Daniël, Anne M Scheel, and Peder M Isager. 2018.
“Equivalence Testing for Psychological Research: A
Tutorial.” Advances in Methods and Practices in Psychological
Science 1 (2): 259–69.
Leeper, Thomas J., Sara B. Hobolt, and James Tilley. 2020.
“Measuring Subgroup Preferences in Conjoint Experiments.”
Political Analysis 28 (2): 207–21. https://doi.org/10.1017/pan.2019.30.
Lenth, Russell V. 2024.
emmeans
: Estimated Marginal
Means, Aka Least-Squares Means. https://cran.r-project.org/package=emmeans.
Lin, Winston. 2013. “Agnostic Notes on Regression Adjustments to
Experimental Data: Reexamining Freedman’s Critique.” Annals
of Applied Statistics 7 (1): 295–318. https://doi.org/10.1214/12-AOAS583.
Lundberg, Ian, Rebecca Johnson, and Brandon M. Stewart. 2021.
“What Is Your Estimand? Defining the Target Quantity Connects
Statistical Evidence to Theory.” American Sociological
Review 86 (3): 532–65. https://doi.org/10.1177/00031224211004187.
McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course
with Examples in r and STAN. 2nd ed. New York: Chapman; Hall/CRC.
https://doi.org/10.1201/9780429029608.
McKinney, Wes. 2022. Python for Data Analysis. " O’Reilly
Media, Inc.".
Morgan, Stephen L, and Christopher Winship. 2015. Counterfactuals
and Causal Inference. Cambridge University Press.
Nickerson, Raymond S. 2004. Cognition and Chance: The Psychology of
Probabilistic Reasoning. 1st ed. Psychology Press. https://doi.org/10.4324/9781410610836.
Ornstein, Joseph T. 2023. “Getting the Most Out of Surveys:
Multilevel Regression and Poststratification.” In Causality
in Policy Studies: A Pluralist Toolbox, edited by Alessia Damonte
and Fedra Negri, 99–122. Springer. https://doi.org/10.1007/978-3-031-12982-7_5.
Pearl, Judea. 2009. Causality. Cambridge university press.
———. 2014. “Interpretation and Identification of Causal
Mediation.” Psychological Methods 19 (4): 459–81. https://doi.org/10.1037/a0036434.
Pearl, Judea, and Dana Mackenzie. 2018. The Book of Why: The New
Science of Cause and Effect. Basic books.
Pedersen, Thomas Lin. 2024. Patchwork: The Composer of Plots.
https://patchwork.data-imaginist.com.
Pustejovsky, James. 2023. clubSandwich: Cluster-Robust (Sandwich)
Variance Estimators with Small-Sample Corrections. https://CRAN.R-project.org/package=clubSandwich.
Qu, Y., and J. Luo. 2015. “Estimation of Group Means When
Adjusting for Covariates in Generalized Linear Models.”
Pharmaceutical Statistics 14 (1): 56–62. https://doi.org/10.1002/pst.1741.
Rainey, Carlisle. 2014. “Arguing for a Negligible Effect.”
American Journal of Political Science 58 (4): 1083–91.
———. 2024. “A Careful Consideration of CLARIFY: Simulation-Induced
Bias in Point Estimates of Quantities of Interest.” Political
Science Research and Methods 12 (3): 614–23. https://doi.org/10.1017/psrm.2023.8.
Thornton, Rebecca L. 2008. “The Demand for, and Impact of,
Learning HIV Status.” American Economic Review 98 (5):
1829–63.
Tukey, John W. 1977. Exploratory Data Analysis. Reading, MA:
Addison-Wesley.
Wasserman, Larry. 2004. All of Statistics: A Concise Course in
Statistical Inference. Springer Texts in Statistics. New York, NY:
Springer. https://doi.org/10.1007/978-0-387-21736-9.
———. 2006. All of Nonparametric Statistics. Springer Texts in
Statistics. New York, NY: Springer.
Wellek, Stefan. 2010. Testing Statistical Hypotheses of Equivalence
and Noninferiority. CRC Press.
https://www.taylorfrancis.com/books/mono/10.1201/EBK1439808184/testing-statistical-hypotheses-equivalence-noninferiority-stefan-wellek
.
Westreich, Daniel, and Sander Greenland. 2013. “The Table 2
Fallacy: Presenting and Interpreting Confounder and Modifier
Coefficients.” American Journal of Epidemiology 177 (4):
292–98. https://doi.org/10.1093/aje/kws412.
Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. 2023.
R for Data Science: Import, Tidy, Transform, Visualize, and Model
Data. 2nd ed. Sebastopol, CA: O’Reilly Media. https://www.amazon.ca/dp/1492097403.
Wood, Simon N. 2017. Generalized Additive Models: An Introduction
with r. 2nd ed. Boca Raton, FL: Chapman; Hall/CRC.
Zeileis, Achim, Susanne Köll, and Nathaniel Graham. 2020. “Various
Versatile Variances: An Object-Oriented Implementation of Clustered
Covariances in
R
.” Journal of Statistical
Software 95 (1): 1–36. https://doi.org/10.18637/jss.v095.i01.
Zhao, Jinhui, Tim Stockwell, Tim Naimi, Sam Churchill, James Clay, and
Adam Sherk. 2023. “Association Between Daily
Alcohol Intake and Risk of All-Cause Mortality: A Systematic Review and
Meta-analyses.” JAMA Network Open 6 (3):
e236185–85. https://doi.org/10.1001/jamanetworkopen.2023.6185.