41 Bibliography
Abramson, Scott F, Korhan Kocak, Asya Magazinnik, and Anton Strezhnev.
2024. “Detecting Preference Cycles in Forced-Choice Conjoint
Experiments.” SocArXiv. https://doi.org/10.31235/osf.io/xjre9.
Alexander, Rohan. 2023. Telling Stories with Data: With Applications
in r. Chapman; Hall/CRC.
Angelopoulos, Anastasios N., and Stephen Bates. 2022. “A Gentle
Introduction to Conformal Prediction and Distribution-Free Uncertainty
Quantification,” no. arXiv:2107.07511 (September). https://doi.org/10.48550/arXiv.2107.07511.
Angrist, Joshua D, and Jörn-Steffen Pischke. 2009. Mostly Harmless
Econometrics: An Empiricist’s Companion. Princeton university
press.
Arel-Bundock, Vincent, Noah Greifer, and Andrew Heiss. Forthcoming.
“How to Interpret Statistical Models Using marginaleffects in R and
Python.” Journal of Statistical Software,
Forthcoming.
———. Forthcoming. “How to Interpret Statistical Models Using
marginaleffects
in R
and
Python
.” Journal of Statistical Software,
Forthcoming. https://marginaleffects.com.
Aronow, Peter M., and Benjamin T. Miller. 2019. Foundations of
Agnostic Statistics. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316831762.
Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015.
“Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical
Software 67 (1): 1–48. https://doi.org/10.18637/jss.v067.i01.
Berger, Roger, and George Casella. 2024. Statistical Inference.
2nd ed. CRC Press.
Brambor, Thomas, William Roberts Clark, and Matt Golder. 2006.
“Understanding Interaction Models: Improving Empirical
Analyses.” Political Analysis 14 (1): 63–82.
Brooks, Mollie E., Kasper Kristensen, Koen J. van Benthem, Arni
Magnusson, Casper W. Berg, Anders Nielsen, Hans J. Skaug, Martin
Maechler, and Benjamin M. Bolker. 2017. “glmmTMB Balances Speed and Flexibility Among
Packages for Zero-Inflated Generalized Linear Mixed Modeling.”
The R Journal 9 (2): 378–400. https://doi.org/10.32614/RJ-2017-066.
Bürkner, Paul C. 2024. The Brms Book: Applied Bayesian Regression
Modelling Using r and Stan (Early Draft). https://paulbuerkner.com/software/brms-book.
Cameron, A Colin, and Pravin K Trivedi. 2005. Microeconometrics:
Methods and Applications. Cambridge university press.
Clark, William Roberts, and Matt Golder. 2023. Interaction Models:
Specification and Interpretation. Methodological Tools in the
Social Sciences. Cambridge University Press.
Efron, Bradley, and R. J. Tibshirani. 1994. An Introduction to the
Bootstrap. New York: Chapman; Hall/CRC. https://doi.org/10.1201/9780429246593.
Fair, Ray C. 1978. “A Theory of Extramarital Affairs.”
Journal of Political Economy 86: 45–61.
Finch, W Holmes, Jocelyn E Bolin, and Ken Kelley. 2019. Multilevel
Modeling Using r. Chapman; Hall/CRC.
Freedman, David A. 2008. “On Regression Adjustments to
Experimental Data.” Advances in Applied Mathematics 40
(2): 180–93.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. 3rd
ed. New York: Chapman; Hall/CRC. https://doi.org/10.1201/b16018.
Gelman, Andrew, and Jennifer Hill. 2006. Data Analysis Using
Regression and Multilevel/Hierarchical Models. 1st ed. Cambridge
University Press. http://www.stat.columbia.edu/~gelman/arm/.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob
Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian
Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.” https://arxiv.org/abs/2011.01808.
Goldsmith-Pinkham, Paul, Peter Hull, and Michal Kolesár. Forthcoming.
“Contamination Bias in Linear Regressions.” American
Economic Review, Forthcoming.
Hainmueller, Jens, Daniel Hopkins, and Teppei Yamamoto. 2014.
“Causal Inference in Conjoint Analysis: Understanding
Multi-Dimensional Choices via Stated Preference Experiments.”
Political Analysis 22 (1): 1–30.
Hainmueller, Jens, Jonathan Mummolo, and Yiqing Xu. 2019. “How
Much Should We Trust Estimates from Multiplicative Interaction Models?
Simple Tools to Improve Empirical Practice.” Political
Analysis 27 (2): 163–92.
Hansen, Bruce. 2022a. Econometrics. 1st ed. Princeton, NJ:
Princeton University Press.
https://press.princeton.edu/books/hardcover/9780691223248/econometrics
.
———. 2022b. Probability and Statistics for Economists. 1st ed.
Princeton, NJ: Princeton University Press.
https://press.princeton.edu/books/hardcover/9780691235899/probability-and-statistics-for-economists
.
Harrell, Frank. 2021. “Statistical Thinking - Avoiding One-Number
Summaries of Treatment Effects for RCTs with Binary Outcomes.” https://www.fharrell.com/post/rdist/.
Heiss, Andrew. 2022. “Marginalia: A Guide to Figuring
Out What the Heck Marginal Effects, Marginal Slopes, Average Marginal
Effects, Marginal Effects at the Mean, and All These Other Marginal
Things Are.” May 20, 2022. https://doi.org/10.59350/40xaj-4e562.
Hernán, Miguel A. 2018. “The c-Word: Scientific Euphemisms Do Not
Improve Causal Inference from Observational Data.” American
Journal of Public Health 108 (5): 616–19.
Hernán, Miguel A, and James M Robins. 2020. Causal
Inference: What If. Boca
Raton: Chapman & Hall/CRC.
Hyndman, Rob J, and George Athanasopoulos. 2018. Forecasting:
Principles and Practice. OTexts.
Imbens, Guido W, and Donald B Rubin. 2015. Causal Inference in
Statistics, Social, and Biomedical Sciences. Cambridge university
press.
Kahneman, Daniel, and Amos Tversky. 1979. “Prospect Theory: An
Analysis of Decision Under Risk.” Econometrica 47 (2):
263–91. http://www.jstor.org/stable/1914185.
Kam, Cindy D., and Robert J. Franzese Jr. 2009. Modeling and
Interpreting Interactive Hypotheses in Regression Analysis.
University of Michigan Press. https://doi.org/10.3998/mpub.206871.
King, Gary, Michael Tomz, and Jason Wittenberg. 2000. “Making the
Most of Statistical Analyses: Improving Interpretation and
Presentation.” American Journal of Political Science,
347–61.
Krinsky, I., and A. L. Robb. 1986. “On Approximating the
Statistical Properties of Elasticities.” Review of Economics
and Statistics 68 (4): 715–19.
Lakens, Daniël, Anne M. Scheel, and Peder M. Isager. 2018.
“Equivalence Testing for Psychological
Research: A Tutorial.” Advances in
Methods and Practices in Psychological Science 1 (2): 259–69. https://doi.org/10.1177/2515245918770963.
Leeper, Thomas J., Sara B. Hobolt, and James Tilley. 2020.
“Measuring Subgroup Preferences in Conjoint Experiments.”
Political Analysis 28 (2): 207–21. https://doi.org/10.1017/pan.2019.30.
Lenth, Russell V. 2024.
emmeans
: Estimated Marginal
Means, Aka Least-Squares Means. https://cran.r-project.org/package=emmeans.
Lin, Winston. 2013. “Agnostic Notes on Regression Adjustments to
Experimental Data: Reexamining Freedman’s Critique.” Annals
of Applied Statistics 7 (1): 295–318. https://doi.org/10.1214/12-AOAS583.
Lundberg, Ian, Rebecca Johnson, and Brandon M. Stewart. 2021.
“What Is Your Estimand? Defining the Target Quantity Connects
Statistical Evidence to Theory.” American Sociological
Review 86 (3): 532–65. https://doi.org/10.1177/00031224211004187.
McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course
with Examples in r and STAN. 2nd ed. New York: Chapman; Hall/CRC.
https://doi.org/10.1201/9780429029608.
McKinney, Wes. 2022. Python for Data Analysis. " O’Reilly
Media, Inc.".
Morgan, Stephen L, and Christopher Winship. 2015. Counterfactuals
and Causal Inference. Cambridge University Press.
Nickerson, Raymond S. 2004. Cognition and Chance: The Psychology of
Probabilistic Reasoning. 1st ed. Psychology Press. https://doi.org/10.4324/9781410610836.
Ornstein, Joseph T. 2023. “Getting the Most Out of Surveys:
Multilevel Regression and Poststratification.” In Causality
in Policy Studies: A Pluralist Toolbox, edited by Alessia Damonte
and Fedra Negri, 99–122. Springer. https://doi.org/10.1007/978-3-031-12982-7_5.
Pearl, Judea. 2009. Causality. Cambridge university press.
Pearl, Judea, and Dana Mackenzie. 2018. The Book of Why: The New
Science of Cause and Effect. Basic books.
Pustejovsky, James. 2023. clubSandwich: Cluster-Robust (Sandwich)
Variance Estimators with Small-Sample Corrections. https://CRAN.R-project.org/package=clubSandwich.
Rainey, Carlisle. 2014. “Arguing for a Negligible Effect.”
American Journal of Political Science 58 (4): 1083–91.
———. 2024. “A Careful Consideration of CLARIFY: Simulation-Induced
Bias in Point Estimates of Quantities of Interest.” Political
Science Research and Methods 12 (3): 614–23. https://doi.org/10.1017/psrm.2023.8.
Thornton, Rebecca L. 2008. “The Demand for, and Impact of,
Learning HIV Status.” American Economic Review 98 (5):
1829–63.
Tukey, John W. 1977. Exploratory Data Analysis. Reading, MA:
Addison-Wesley.
Wasserman, Larry. 2004. All of Statistics: A Concise Course in
Statistical Inference. Springer Texts in Statistics. New York, NY:
Springer. https://doi.org/10.1007/978-0-387-21736-9.
———. 2006. All of Nonparametric Statistics. Springer Texts in
Statistics. New York, NY: Springer.
Wellek, Stefan. 2010. Testing Statistical Hypotheses of Equivalence
and Noninferiority. CRC Press.
https://www.taylorfrancis.com/books/mono/10.1201/EBK1439808184/testing-statistical-hypotheses-equivalence-noninferiority-stefan-wellek
.
Westreich, Daniel, and Sander Greenland. 2013. “The Table 2
Fallacy: Presenting and Interpreting Confounder and Modifier
Coefficients.” American Journal of Epidemiology 177 (4):
292–98. https://doi.org/10.1093/aje/kws412.
Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. 2023.
R for Data Science: Import, Tidy, Transform, Visualize, and Model
Data. 2nd ed. Sebastopol, CA: O’Reilly Media. https://www.amazon.ca/dp/1492097403.
Zeileis, Achim, Susanne Köll, and Nathaniel Graham. 2020. “Various
Versatile Variances: An Object-Oriented Implementation of Clustered
Covariances in
R
.” Journal of Statistical
Software 95 (1): 1–36. https://doi.org/10.18637/jss.v095.i01.
Zhao, Jinhui, Tim Stockwell, Tim Naimi, Sam Churchill, James Clay, and
Adam Sherk. 2023. “Association Between Daily
Alcohol Intake and Risk of All-Cause Mortality: A Systematic Review and
Meta-analyses.” JAMA Network Open 6 (3):
e236185–85. https://doi.org/10.1001/jamanetworkopen.2023.6185.