Contrasts
When using the avg_comparisons()
function (or the avg_slopes()
function with categorical variables), the output will include two columns to uniquely identify the quantities of interest: term
and contrast
.
dat <- mtcars
dat $ gear <- as.factor ( dat $ gear )
mod <- glm ( vs ~ gear + mpg , data = dat , family = binomial )
cmp <- avg_comparisons ( mod )
get_estimates ( cmp )
#> # A tibble: 3 × 9
#> term contrast estimate std.error statistic p.value s.value conf.low conf.high
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 gear 4 - 3 0.0372 0.137 0.272 0.785 0.348 -0.230 0.305
#> 2 gear 5 - 3 -0.340 0.0988 -3.44 0.000588 10.7 -0.533 -0.146
#> 3 mpg +1 0.0609 0.0128 4.78 0.00000178 19.1 0.0359 0.0859
We can use the shape
argument of the modelsummary
function to structure the table properly:
(1)
gear
4 - 3
0.037
(0.137)
5 - 3
-0.340
(0.099)
mpg
+1
0.061
(0.013)
Num.Obs.
32
AIC
26.2
BIC
32.1
Log.Lik.
-9.101
F
2.389
RMSE
0.31
Cross-contrasts can be a bit trickier, since there are multiple simultaneous groups. Consider this example:
mod <- lm ( mpg ~ factor ( cyl ) + factor ( gear ) , data = mtcars )
cmp <- avg_comparisons (
mod ,
variables = c ( "gear" , "cyl" ) ,
cross = TRUE )
get_estimates ( cmp )
#> # A tibble: 4 × 10
#> term contrast_cyl contrast_gear estimate std.error statistic p.value s.value conf.low conf.high
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 cross 6 - 4 4 - 3 -5.33 2.77 -1.93 0.0542 4.21 -10.8 0.0953
#> 2 cross 6 - 4 5 - 3 -5.16 2.63 -1.96 0.0500 4.32 -10.3 0.000166
#> 3 cross 8 - 4 4 - 3 -9.22 3.62 -2.55 0.0108 6.53 -16.3 -2.13
#> 4 cross 8 - 4 5 - 3 -9.04 3.19 -2.84 0.00453 7.79 -15.3 -2.80
As we can see above, there are two relevant grouping columns: contrast_gear
and contrast_cyl
. We can simply plug those names in the shape
argument:
modelsummary (
cmp ,
shape = contrast_gear + contrast_cyl ~ model )
gear
cyl
(1)
4 - 3
6 - 4
-5.332
(2.769)
8 - 4
-9.218
(3.618)
5 - 3
6 - 4
-5.156
(2.631)
8 - 4
-9.042
(3.185)
Num.Obs.
32
R2
0.740
R2 Adj.
0.701
AIC
173.7
BIC
182.5
Log.Lik.
-80.838
F
19.190
RMSE
3.03