Contrasts
When using the avg_comparisons()
function (or the avg_slopes()
function with categorical variables), the output will include two columns to uniquely identify the quantities of interest: term
and contrast
.
# A tibble: 3 × 12
term contrast estimate std.error statistic p.value s.value conf.low conf.high
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 gear mean(4)… 0.0372 0.137 0.272 7.85e-1 0.348 -0.230 0.305
2 gear mean(5)… -0.340 0.0988 -3.44 5.88e-4 10.7 -0.533 -0.146
3 mpg mean(+1) 0.0609 0.0128 4.78 1.78e-6 19.1 0.0359 0.0859
# ℹ 3 more variables: predicted_lo <dbl>, predicted_hi <dbl>, predicted <dbl>
We can use the shape
argument of the modelsummary
function to structure the table properly:
(1)
gear
mean(4) - mean(3)
0.037
(0.137)
mean(5) - mean(3)
-0.340
(0.099)
mpg
mean(+1)
0.061
(0.013)
Num.Obs.
32
AIC
26.2
BIC
32.1
Log.Lik.
-9.101
F
2.389
RMSE
0.31
Cross-contrasts can be a bit trickier, since there are multiple simultaneous groups. Consider this example:
Warning: The `cyl` variable is treated as a categorical (factor) variable, but
the original data is of class numeric. It is safer and faster to convert
such variables to factor before fitting the model and calling a
`marginaleffects` function.
This warning appears once per session.
FALSE
# A tibble: 4 × 10
term contrast_cyl contrast_gear estimate std.error statistic p.value s.value
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 cross mean(6) - me… mean(4) - me… -5.33 2.77 -1.93 0.0542 4.21
2 cross mean(6) - me… mean(5) - me… -5.16 2.63 -1.96 0.0500 4.32
3 cross mean(8) - me… mean(4) - me… -9.22 3.62 -2.55 0.0108 6.53
4 cross mean(8) - me… mean(5) - me… -9.04 3.19 -2.84 0.00453 7.79
# ℹ 2 more variables: conf.low <dbl>, conf.high <dbl>
As we can see above, there are two relevant grouping columns: contrast_gear
and contrast_cyl
. We can simply plug those names in the shape
argument:
modelsummary (
cmp ,
shape = contrast_gear + contrast_cyl ~ model )
gear
cyl
(1)
mean(4) - mean(3)
mean(6) - mean(4)
-5.332
(2.769)
mean(8) - mean(4)
-9.218
(3.618)
mean(5) - mean(3)
mean(6) - mean(4)
-5.156
(2.631)
mean(8) - mean(4)
-9.042
(3.185)
Num.Obs.
32
R2
0.740
R2 Adj.
0.701
AIC
173.7
BIC
182.5
Log.Lik.
-80.838
F
19.190
RMSE
3.03