36  Supported Models

marginaleffects effects supports 102 model types directly, and dozens more via the tidymodels and mlr3 frameworks. This table shows the list of directly supported model types. There are three main alternative software packages to compute such slopes (1) Stata’s margins command, (2) R’s margins::margins() function, and (3) R’s emmeans::emtrends() function. The test suite hosted on Github compares the numerical equivalence of results produced by marginaleffects::slopes() to those produced by all 3 alternative software packages:

I am eager to add support for new models. Feel free to file a request or submit code on Github.

Numerical equivalence
Supported by marginaleffects
Stata
margins
emtrends
Package Function dY/dX SE dY/dX SE dY/dX SE
AER ivreg U U
tobit U U
DCchoice oohbchoice
MASS glm.nb
glmmPQL U U
polr
rlm
MCMCglmm MCMCglmm U U U U U U
REndo copulaCorrection
hetErrorsIV
higherMomentsIV
latentIV
multilevelIV
Rchoice hetprob
ivpml
afex afex_aov U U
aod betabin U U U U
betareg betareg
bife bife U U U U
biglm bigglm U U U U
biglm U U U U
blme bglmer
blmer
brglm2 bracl U U U U
brglmFit
brmultinom U U U U
brnb U U
brms brm U U
crch crch U U U U
hxlr U U U U
estimatr iv_robust U U U U
lm_lin
lm_robust U
fixest feglm U U U U
fenegbin U U U U
feols U U U U
fepois U U U U
flexsurv flexsurvreg
flexsurvspline
gam gam U U
gamlss gamlss U U
geepack geeglm U U
glmmTMB glmmTMB U U
glmtoolbox glmgee
glmx glmx U U U
ivreg ivreg U U
lme4 glmer
glmer.nb
lmer
lmerTest lmer
logistf flac
flic
logistf
mclogit mblogit U U U U
mclogit U U U U
mgcv bam U U
gam U U
mhurdle mhurdle U U
mlogit mlogit U U U U
mlr3 Learner
mvgam mvgam
nlme gls U U
lme
nnet multinom U U U U
ordbetareg ordbetareg U U
ordinal clm U U U U
phylolm phyloglm
phylolm
plm plm U U
pscl hurdle U
hurdle U
zeroinfl U
quantreg rq U U
rms Gls
lrm
ols
orm
robust lmRob U U U U
robustbase glmrob U U
lmrob U U
robustlmm rlmer U U
rstanarm stan_glm U
rstpm2 aft
gsm
pstpm2
stpm2
sampleSelection heckit U U U U
selection U U U U
scam scam U U U U
speedglm speedglm U U
speedlm U U
stats glm
lm
loess U U
nls
survey svyglm
svyolr
survival clogit
coxph U U
survreg
tobit1 tobit1 U U
truncreg truncreg U U