Quick start
This page explains how to interpret statistical results using the marginaleffects
package for R
and Python
. The workflow that we propose rests on 5 conceptual pillars:
- Quantity: What is the quantity of interest? Do we want to estimate a prediction or a function of predictions (average, difference, ratio, derivative, etc.)?
- Predictors: What regressor values are we interested in? Do we want to produce estimates for the units in our dataset, or for hypothetical or representative individuals?
- Aggregation: Do we report estimates for every observation in the grid or a global summary?
- Uncertainty: How do we quantify uncertainty about our estimates?
- Test: Which (non-)linear hypothesis or equivalence tests do we conduct?
Installation
Before we begin, let’s install the marginaleffects
package, available for R
and Python
:
Install from CRAN:
install.packages("marginaleffects")
Install from PyPI:
pip install marginaleffects
Quantity
The marginaleffects
package allows R
users to compute and plot three principal quantities of interest: (1) predictions, (2) comparisons, and (3) slopes. In addition, the package includes a convenience function to compute a fourth quantity of interest, “marginal means”, which is a special case of averaged predictions. marginaleffects
can also average (or “marginalize”) unit-level (or “conditional”) estimates of all those quantities, and conduct hypothesis tests on them.
The outcome predicted by a fitted model on a specified scale for a given combination of values of the predictor variables, such as their observed values, their means, or factor levels. a.k.a. Fitted values, adjusted predictions.
predictions()
,avg_predictions()
,plot_predictions()
.
Compare the predictions made by a model for different regressor values (e.g., college graduates vs. others): contrasts, differences, risk ratios, odds, etc.
comparisons()
,avg_comparisons()
,plot_comparisons()
.
Partial derivative of the regression equation with respect to a regressor of interest. a.k.a. Marginal effects, trends.
slopes()
,avg_slopes()
,plot_slopes()
.
Predictions of a model, averaged across a “reference grid” of categorical predictors.
marginalmeans()
.
Hypothesis and Equivalence Tests:
Hypothesis and equivalence tests can be conducted on linear or non-linear functions of model coefficients, or on any of the quantities computed by the
marginaleffects
packages (predictions, slopes, comparisons, marginal means, etc.). Uncertainy estimates can be obtained via the delta method (with or without robust standard errors), bootstrap, or simulation.
Predictions, comparisons, and slopes are fundamentally unit-level (or “conditional”) quantities. Except in the simplest linear case, estimates will typically vary based on the values of all the regressors in a model. Each of the observations in a dataset is thus associated with its own prediction, comparison, and slope estimates. Below, we will see that it can be useful to marginalize (or “average over”) unit-level estimates to report an “average prediction”, “average comparison”, or “average slope”.
One ambiguous aspect of the definitions above is that the word “marginal” comes up in two different and opposite ways:
- In “marginal effects,” we refer to the effect of a tiny (marginal) change in the regressor on the outcome. This is a slope, or derivative.
- In “marginal means,” we refer to the process of marginalizing across rows of a prediction grid. This is an average, or integral.
On this website and in this package, we reserve the expression “marginal effect” to mean a “slope” or “partial derivative”.
The marginaleffects
package includes functions to estimate, average, plot, and summarize all of the estimands described above. The objects produced by marginaleffects
are “tidy”: they produce simple data frames in “long” format. They are also “standards-compliant” and work seamlessly with standard functions like summary()
, head()
, tidy()
, and glance()
, as well with external packages like modelsummary
or ggplot2
.
We now apply marginaleffects
functions to compute each of the quantities of interest described above. First, we fit a linear regression model with multiplicative interactions:
library(marginaleffects)
mod <- lm(mpg ~ hp * wt * am, data = mtcars)
import polars as pl
import numpy as np
import statsmodels.formula.api as smf
from marginaleffects import *
= pl.read_csv("https://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv")
mtcars
= smf.ols("mpg ~ hp * wt * am", data = mtcars).fit() mod
Then, we call the predictions()
function. As noted above, predictions are unit-level estimates, so there is one specific prediction per observation. By default, the predictions()
function makes one prediction per observation in the dataset that was used to fit the original model. Since mtcars
has 32 rows, the predictions()
outcome also has 32 rows:
pre <- predictions(mod)
nrow(mtcars)
[1] 32
nrow(pre)
[1] 32
pre
Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|
Type: response | ||||||
Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, mpg, hp, wt, am | ||||||
22.5 | 0.884 | 25.44 | <0.001 | 471.7 | 20.8 | 24.2 |
20.8 | 1.194 | 17.42 | <0.001 | 223.3 | 18.5 | 23.1 |
25.3 | 0.709 | 35.66 | <0.001 | 922.7 | 23.9 | 26.7 |
20.3 | 0.704 | 28.75 | <0.001 | 601.5 | 18.9 | 21.6 |
17.0 | 0.712 | 23.88 | <0.001 | 416.2 | 15.6 | 18.4 |
29.6 | 1.874 | 15.80 | <0.001 | 184.3 | 25.9 | 33.3 |
15.9 | 1.311 | 12.13 | <0.001 | 110.0 | 13.3 | 18.5 |
19.4 | 1.145 | 16.95 | <0.001 | 211.6 | 17.2 | 21.7 |
14.8 | 2.017 | 7.33 | <0.001 | 42.0 | 10.8 | 18.7 |
21.5 | 1.072 | 20.02 | <0.001 | 293.8 | 19.4 | 23.6 |
= predictions(mod)
pre
mtcars.shape
(32, 12)
pre.shape
(32, 20)
print(pre)
shape: (32, 7)
┌──────────┬───────────┬──────┬──────────┬─────┬──────┬───────┐
│ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞══════════╪═══════════╪══════╪══════════╪═════╪══════╪═══════╡
│ 22.5 ┆ 0.884 ┆ 25.4 ┆ 0 ┆ inf ┆ 20.8 ┆ 24.2 │
│ 20.8 ┆ 1.19 ┆ 17.4 ┆ 0 ┆ inf ┆ 18.5 ┆ 23.1 │
│ 25.3 ┆ 0.709 ┆ 35.7 ┆ 0 ┆ inf ┆ 23.9 ┆ 26.7 │
│ 20.3 ┆ 0.704 ┆ 28.8 ┆ 0 ┆ inf ┆ 18.9 ┆ 21.6 │
│ 17 ┆ 0.712 ┆ 23.9 ┆ 0 ┆ inf ┆ 15.6 ┆ 18.4 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ 29.6 ┆ 1.87 ┆ 15.8 ┆ 0 ┆ inf ┆ 25.9 ┆ 33.3 │
│ 15.9 ┆ 1.31 ┆ 12.1 ┆ 0 ┆ inf ┆ 13.3 ┆ 18.5 │
│ 19.4 ┆ 1.15 ┆ 16.9 ┆ 0 ┆ inf ┆ 17.2 ┆ 21.7 │
│ 14.8 ┆ 2.02 ┆ 7.33 ┆ 2.29e-13 ┆ 42 ┆ 10.8 ┆ 18.7 │
│ 21.5 ┆ 1.07 ┆ 20 ┆ 0 ┆ inf ┆ 19.4 ┆ 23.6 │
└──────────┴───────────┴──────┴──────────┴─────┴──────┴───────┘
Columns: rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
Now, we use the comparisons()
function to compute the difference in predicted outcome when each of the predictors is incremented by 1 unit (one predictor at a time, holding all others constant). Once again, comparisons are unit-level quantities. And since there are 3 predictors in the model and our data has 32 rows, we obtain 96 comparisons:
cmp <- comparisons(mod)
nrow(cmp)
[1] 96
cmp
Term | Contrast | Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|---|---|
Type: response | ||||||||
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted, mpg, hp, wt, am | ||||||||
am | 1 - 0 | 0.325 | 1.68 | 0.193 | 0.8467 | 0.2 | -2.97 | 3.622 |
am | 1 - 0 | -0.544 | 1.57 | -0.347 | 0.7287 | 0.5 | -3.62 | 2.530 |
am | 1 - 0 | 1.201 | 2.35 | 0.511 | 0.6090 | 0.7 | -3.40 | 5.802 |
am | 1 - 0 | -1.703 | 1.87 | -0.912 | 0.3618 | 1.5 | -5.36 | 1.957 |
am | 1 - 0 | -0.615 | 1.68 | -0.366 | 0.7146 | 0.5 | -3.91 | 2.680 |
wt | +1 | -6.518 | 1.88 | -3.462 | <0.001 | 10.9 | -10.21 | -2.828 |
wt | +1 | -1.653 | 3.74 | -0.442 | 0.6588 | 0.6 | -8.99 | 5.683 |
wt | +1 | -4.520 | 2.47 | -1.830 | 0.0672 | 3.9 | -9.36 | 0.321 |
wt | +1 | 0.635 | 4.89 | 0.130 | 0.8966 | 0.2 | -8.95 | 10.216 |
wt | +1 | -6.647 | 1.86 | -3.572 | <0.001 | 11.5 | -10.29 | -2.999 |
cmp = comparisons(mod)
cmp.shape
(96, 25)
print(cmp)
shape: (96, 9)
┌──────┬──────────────┬──────────┬───────────┬───┬──────────┬───────┬───────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪══════════════╪══════════╪═══════════╪═══╪══════════╪═══════╪═══════╪═══════╡
│ am ┆ True - False ┆ 0.325 ┆ 1.68 ┆ … ┆ 0.847 ┆ 0.24 ┆ -2.97 ┆ 3.62 │
│ am ┆ True - False ┆ -0.544 ┆ 1.57 ┆ … ┆ 0.729 ┆ 0.457 ┆ -3.62 ┆ 2.53 │
│ am ┆ True - False ┆ 1.2 ┆ 2.35 ┆ … ┆ 0.609 ┆ 0.715 ┆ -3.4 ┆ 5.8 │
│ am ┆ True - False ┆ -1.7 ┆ 1.87 ┆ … ┆ 0.362 ┆ 1.47 ┆ -5.36 ┆ 1.96 │
│ am ┆ True - False ┆ -0.615 ┆ 1.68 ┆ … ┆ 0.715 ┆ 0.485 ┆ -3.91 ┆ 2.68 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ wt ┆ +1 ┆ -6.52 ┆ 1.88 ┆ … ┆ 0.000537 ┆ 10.9 ┆ -10.2 ┆ -2.83 │
│ wt ┆ +1 ┆ -1.65 ┆ 3.74 ┆ … ┆ 0.659 ┆ 0.602 ┆ -8.99 ┆ 5.68 │
│ wt ┆ +1 ┆ -4.52 ┆ 2.47 ┆ … ┆ 0.0672 ┆ 3.89 ┆ -9.36 ┆ 0.321 │
│ wt ┆ +1 ┆ 0.635 ┆ 4.89 ┆ … ┆ 0.897 ┆ 0.157 ┆ -8.95 ┆ 10.2 │
│ wt ┆ +1 ┆ -6.65 ┆ 1.86 ┆ … ┆ 0.000355 ┆ 11.5 ┆ -10.3 ┆ -3 │
└──────┴──────────────┴──────────┴───────────┴───┴──────────┴───────┴───────┴───────┘
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
The comparisons()
function allows customized queries. For example, what happens to the predicted outcome when the hp
variable increases from 100 to 120?
comparisons(mod, variables = list(hp = c(120, 100)))
Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|
Type: response | ||||||
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted, mpg, hp, wt, am | ||||||
-0.738 | 0.370 | -1.995 | 0.04607 | 4.4 | -1.463 | -0.0129 |
-0.574 | 0.313 | -1.836 | 0.06640 | 3.9 | -1.186 | 0.0388 |
-0.931 | 0.452 | -2.062 | 0.03922 | 4.7 | -1.817 | -0.0460 |
-0.845 | 0.266 | -3.182 | 0.00146 | 9.4 | -1.366 | -0.3248 |
-0.780 | 0.268 | -2.909 | 0.00362 | 8.1 | -1.306 | -0.2547 |
-1.451 | 0.705 | -2.058 | 0.03958 | 4.7 | -2.834 | -0.0692 |
-0.384 | 0.270 | -1.422 | 0.15498 | 2.7 | -0.912 | 0.1451 |
-0.641 | 0.334 | -1.918 | 0.05513 | 4.2 | -1.297 | 0.0141 |
-0.126 | 0.272 | -0.463 | 0.64360 | 0.6 | -0.659 | 0.4075 |
-0.635 | 0.332 | -1.911 | 0.05598 | 4.2 | -1.286 | 0.0162 |
cmp = comparisons(mod, variables = {"hp": [120, 100]})
print(cmp)
shape: (32, 9)
┌──────┬───────────┬──────────┬───────────┬───┬─────────┬───────┬─────────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪═══════════╪══════════╪═══════════╪═══╪═════════╪═══════╪═════════╪═══════╡
│ hp ┆ 100 - 120 ┆ 0.738 ┆ 0.37 ┆ … ┆ 0.0461 ┆ 4.44 ┆ 0.0129 ┆ 1.46 │
│ hp ┆ 100 - 120 ┆ 0.574 ┆ 0.313 ┆ … ┆ 0.0664 ┆ 3.91 ┆ -0.0388 ┆ 1.19 │
│ hp ┆ 100 - 120 ┆ 0.931 ┆ 0.452 ┆ … ┆ 0.0392 ┆ 4.67 ┆ 0.046 ┆ 1.82 │
│ hp ┆ 100 - 120 ┆ 0.845 ┆ 0.266 ┆ … ┆ 0.00146 ┆ 9.42 ┆ 0.325 ┆ 1.37 │
│ hp ┆ 100 - 120 ┆ 0.78 ┆ 0.268 ┆ … ┆ 0.00362 ┆ 8.11 ┆ 0.255 ┆ 1.31 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ hp ┆ 100 - 120 ┆ 1.45 ┆ 0.705 ┆ … ┆ 0.0396 ┆ 4.66 ┆ 0.0692 ┆ 2.83 │
│ hp ┆ 100 - 120 ┆ 0.384 ┆ 0.27 ┆ … ┆ 0.155 ┆ 2.69 ┆ -0.145 ┆ 0.912 │
│ hp ┆ 100 - 120 ┆ 0.641 ┆ 0.334 ┆ … ┆ 0.0551 ┆ 4.18 ┆ -0.0141 ┆ 1.3 │
│ hp ┆ 100 - 120 ┆ 0.126 ┆ 0.272 ┆ … ┆ 0.644 ┆ 0.636 ┆ -0.408 ┆ 0.659 │
│ hp ┆ 100 - 120 ┆ 0.635 ┆ 0.332 ┆ … ┆ 0.056 ┆ 4.16 ┆ -0.0162 ┆ 1.29 │
└──────┴───────────┴──────────┴───────────┴───┴─────────┴───────┴─────────┴───────┘
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
What happens to the predicted outcome when the hp
variable increases by 1 standard deviation about its mean?
comparisons(mod, variables = list(hp = "sd"))
Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|
Type: response | ||||||
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted, mpg, hp, wt, am | ||||||
-2.530 | 1.269 | -1.995 | 0.04607 | 4.4 | -5.02 | -0.0441 |
-1.967 | 1.072 | -1.836 | 0.06640 | 3.9 | -4.07 | 0.1332 |
-3.193 | 1.549 | -2.062 | 0.03922 | 4.7 | -6.23 | -0.1578 |
-2.898 | 0.911 | -3.182 | 0.00146 | 9.4 | -4.68 | -1.1133 |
-2.675 | 0.919 | -2.909 | 0.00362 | 8.1 | -4.48 | -0.8731 |
-4.976 | 2.418 | -2.058 | 0.03958 | 4.7 | -9.71 | -0.2373 |
-1.315 | 0.925 | -1.422 | 0.15498 | 2.7 | -3.13 | 0.4974 |
-2.199 | 1.147 | -1.918 | 0.05513 | 4.2 | -4.45 | 0.0483 |
-0.432 | 0.933 | -0.463 | 0.64360 | 0.6 | -2.26 | 1.3970 |
-2.177 | 1.139 | -1.911 | 0.05598 | 4.2 | -4.41 | 0.0556 |
cmp = comparisons(mod, variables = {"hp": "sd"})
print(cmp)
shape: (32, 9)
┌──────┬─────────────────────┬──────────┬───────────┬───┬─────────┬───────┬───────┬─────────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪═════════════════════╪══════════╪═══════════╪═══╪═════════╪═══════╪═══════╪═════════╡
│ hp ┆ (x+sd/2) - (x-sd/2) ┆ -2.53 ┆ 1.27 ┆ … ┆ 0.0461 ┆ 4.44 ┆ -5.02 ┆ -0.0441 │
│ hp ┆ (x+sd/2) - (x-sd/2) ┆ -1.97 ┆ 1.07 ┆ … ┆ 0.0664 ┆ 3.91 ┆ -4.07 ┆ 0.133 │
│ hp ┆ (x+sd/2) - (x-sd/2) ┆ -3.19 ┆ 1.55 ┆ … ┆ 0.0392 ┆ 4.67 ┆ -6.23 ┆ -0.158 │
│ hp ┆ (x+sd/2) - (x-sd/2) ┆ -2.9 ┆ 0.911 ┆ … ┆ 0.00146 ┆ 9.42 ┆ -4.68 ┆ -1.11 │
│ hp ┆ (x+sd/2) - (x-sd/2) ┆ -2.68 ┆ 0.919 ┆ … ┆ 0.00362 ┆ 8.11 ┆ -4.48 ┆ -0.873 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ hp ┆ (x+sd/2) - (x-sd/2) ┆ -4.98 ┆ 2.42 ┆ … ┆ 0.0396 ┆ 4.66 ┆ -9.71 ┆ -0.237 │
│ hp ┆ (x+sd/2) - (x-sd/2) ┆ -1.32 ┆ 0.925 ┆ … ┆ 0.155 ┆ 2.69 ┆ -3.13 ┆ 0.497 │
│ hp ┆ (x+sd/2) - (x-sd/2) ┆ -2.2 ┆ 1.15 ┆ … ┆ 0.0551 ┆ 4.18 ┆ -4.45 ┆ 0.0483 │
│ hp ┆ (x+sd/2) - (x-sd/2) ┆ -0.432 ┆ 0.933 ┆ … ┆ 0.644 ┆ 0.636 ┆ -2.26 ┆ 1.4 │
│ hp ┆ (x+sd/2) - (x-sd/2) ┆ -2.18 ┆ 1.14 ┆ … ┆ 0.056 ┆ 4.16 ┆ -4.41 ┆ 0.0556 │
└──────┴─────────────────────┴──────────┴───────────┴───┴─────────┴───────┴───────┴─────────┘
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
The comparisons()
function also allows users to specify arbitrary functions of predictions, with the comparison
argument. For example, what is the average ratio between predicted Miles per Gallon after an increase of 50 units in Horsepower?
comparisons(
mod,
variables = list(hp = 50),
comparison = "ratioavg")
Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|
Type: response | ||||||
Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted | ||||||
0.905 | 0.0319 | 28.4 | <0.001 | 586.8 | 0.843 | 0.968 |
cmp = comparisons(
mod,= {"hp": 50},
variables = "ratioavg")
comparison print(cmp)
shape: (1, 9)
┌──────┬──────────┬──────────┬───────────┬───┬─────────┬─────┬───────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪══════════╪══════════╪═══════════╪═══╪═════════╪═════╪═══════╪═══════╡
│ hp ┆ +50 ┆ 0.91 ┆ 0.0291 ┆ … ┆ 0 ┆ inf ┆ 0.853 ┆ 0.966 │
└──────┴──────────┴──────────┴───────────┴───┴─────────┴─────┴───────┴───────┘
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
See the Comparisons vignette for detailed explanations and more options.
The slopes()
function allows us to compute the partial derivative of the outcome equation with respect to each of the predictors. Once again, we obtain a data frame with 96 rows:
[1] 96
mfx
Term | Contrast | Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|---|---|
Type: response | ||||||||
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted, mpg, hp, wt, am | ||||||||
am | 1 - 0 | 0.325 | 1.68 | 0.193 | 0.8467 | 0.2 | -2.97 | 3.622 |
am | 1 - 0 | -0.544 | 1.57 | -0.347 | 0.7287 | 0.5 | -3.62 | 2.530 |
am | 1 - 0 | 1.201 | 2.35 | 0.511 | 0.6090 | 0.7 | -3.40 | 5.802 |
am | 1 - 0 | -1.703 | 1.87 | -0.912 | 0.3618 | 1.5 | -5.36 | 1.957 |
am | 1 - 0 | -0.615 | 1.68 | -0.366 | 0.7146 | 0.5 | -3.91 | 2.680 |
wt | dY/dX | -6.518 | 1.88 | -3.462 | <0.001 | 10.9 | -10.21 | -2.828 |
wt | dY/dX | -1.653 | 3.74 | -0.442 | 0.6588 | 0.6 | -8.99 | 5.683 |
wt | dY/dX | -4.520 | 2.47 | -1.830 | 0.0673 | 3.9 | -9.36 | 0.321 |
wt | dY/dX | 0.635 | 4.89 | 0.130 | 0.8966 | 0.2 | -8.95 | 10.216 |
wt | dY/dX | -6.647 | 1.86 | -3.572 | <0.001 | 11.5 | -10.29 | -2.999 |
= slopes(mod)
mfx
mfx.shape
(96, 25)
print(mfx)
shape: (96, 9)
┌──────┬──────────────┬──────────┬───────────┬───┬──────────┬───────┬───────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪══════════════╪══════════╪═══════════╪═══╪══════════╪═══════╪═══════╪═══════╡
│ am ┆ True - False ┆ 0.325 ┆ 1.68 ┆ … ┆ 0.847 ┆ 0.24 ┆ -2.97 ┆ 3.62 │
│ am ┆ True - False ┆ -0.544 ┆ 1.57 ┆ … ┆ 0.729 ┆ 0.457 ┆ -3.62 ┆ 2.53 │
│ am ┆ True - False ┆ 1.2 ┆ 2.35 ┆ … ┆ 0.609 ┆ 0.715 ┆ -3.4 ┆ 5.8 │
│ am ┆ True - False ┆ -1.7 ┆ 1.87 ┆ … ┆ 0.362 ┆ 1.47 ┆ -5.36 ┆ 1.96 │
│ am ┆ True - False ┆ -0.615 ┆ 1.68 ┆ … ┆ 0.715 ┆ 0.485 ┆ -3.91 ┆ 2.68 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ wt ┆ dY/dX ┆ -6.52 ┆ 1.88 ┆ … ┆ 0.000537 ┆ 10.9 ┆ -10.2 ┆ -2.83 │
│ wt ┆ dY/dX ┆ -1.65 ┆ 3.74 ┆ … ┆ 0.659 ┆ 0.602 ┆ -8.99 ┆ 5.68 │
│ wt ┆ dY/dX ┆ -4.52 ┆ 2.47 ┆ … ┆ 0.0676 ┆ 3.89 ┆ -9.37 ┆ 0.328 │
│ wt ┆ dY/dX ┆ 0.635 ┆ 4.89 ┆ … ┆ 0.897 ┆ 0.157 ┆ -8.95 ┆ 10.2 │
│ wt ┆ dY/dX ┆ -6.65 ┆ 1.86 ┆ … ┆ 0.00036 ┆ 11.4 ┆ -10.3 ┆ -3 │
└──────┴──────────────┴──────────┴───────────┴───┴──────────┴───────┴───────┴───────┘
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
Predictors
Predictions, comparisons, and slopes are typically “conditional” quantities which depend on the values of all the predictors in the model. By default, marginaleffects
functions estimate quantities of interest for the empirical distribution of the data (i.e., for each row of the original dataset). However, users can specify the exact values of the predictors they want to investigate by using the newdata
argument.
newdata
accepts data frames, shortcut strings, or a call to the datagrid()
function. For example, to compute the predicted outcome for a hypothetical car with all predictors equal to the sample mean or median, we can do:
predictions(mod, newdata = "mean")
Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % | hp | wt | am |
---|---|---|---|---|---|---|---|---|---|
Type: response | |||||||||
Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, hp, wt, am, mpg | |||||||||
18.7 | 0.649 | 28.8 | <0.001 | 603.8 | 17.4 | 20 | 147 | 3.22 | 0 |
predictions(mod, newdata = "median")
Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % | hp | wt | am |
---|---|---|---|---|---|---|---|---|---|
Type: response | |||||||||
Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, hp, wt, am, mpg | |||||||||
19.4 | 0.646 | 30 | <0.001 | 653.2 | 18.1 | 20.6 | 123 | 3.33 | 0 |
= predictions(mod, newdata = "mean")
p print(p)
shape: (1, 7)
┌──────────┬───────────┬──────┬─────────┬─────┬──────┬───────┐
│ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞══════════╪═══════════╪══════╪═════════╪═════╪══════╪═══════╡
│ 17.3 ┆ 0.875 ┆ 19.8 ┆ 0 ┆ inf ┆ 15.6 ┆ 19 │
└──────────┴───────────┴──────┴─────────┴─────┴──────┴───────┘
Columns: rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
= predictions(mod, newdata = "median")
p print(p)
shape: (1, 7)
┌──────────┬───────────┬──────┬─────────┬─────┬──────┬───────┐
│ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞══════════╪═══════════╪══════╪═════════╪═════╪══════╪═══════╡
│ 17.1 ┆ 0.808 ┆ 21.1 ┆ 0 ┆ inf ┆ 15.5 ┆ 18.6 │
└──────────┴───────────┴──────┴─────────┴─────┴──────┴───────┘
Columns: rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
The datagrid
function gives us a powerful way to define a grid of predictors. All the variables not mentioned explicitly in datagrid()
are fixed to their mean or mode:
predictions(
mod,
newdata = datagrid(
am = c(0, 1),
wt = range))
am | wt | Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % | hp |
---|---|---|---|---|---|---|---|---|---|
Type: response | |||||||||
Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, hp, am, wt, mpg | |||||||||
0 | 1.51 | 23.3 | 2.71 | 8.60 | <0.001 | 56.7 | 17.96 | 28.6 | 147 |
0 | 5.42 | 12.8 | 2.98 | 4.30 | <0.001 | 15.8 | 6.96 | 18.6 | 147 |
1 | 1.51 | 27.1 | 2.85 | 9.52 | <0.001 | 69.0 | 21.56 | 32.7 | 147 |
1 | 5.42 | 5.9 | 5.81 | 1.01 | 0.31 | 1.7 | -5.50 | 17.3 | 147 |
= predictions(
p
mod,= datagrid(
newdata = [0, 1],
am = [mtcars["wt"].min(), mtcars["wt"].max()]))
wt print(p)
shape: (4, 9)
┌─────┬──────┬──────────┬───────────┬───┬──────────┬──────┬───────┬───────┐
│ am ┆ wt ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞═════╪══════╪══════════╪═══════════╪═══╪══════════╪══════╪═══════╪═══════╡
│ 0 ┆ 1.51 ┆ 21 ┆ 2.4 ┆ … ┆ 0 ┆ inf ┆ 16.3 ┆ 25.7 │
│ 0 ┆ 5.42 ┆ 12.4 ┆ 1.8 ┆ … ┆ 5.03e-12 ┆ 37.5 ┆ 8.92 ┆ 16 │
│ 1 ┆ 1.51 ┆ 24.7 ┆ 3.93 ┆ … ┆ 3.26e-10 ┆ 31.5 ┆ 17 ┆ 32.4 │
│ 1 ┆ 5.42 ┆ 7.68 ┆ 6.19 ┆ … ┆ 0.215 ┆ 2.22 ┆ -4.45 ┆ 19.8 │
└─────┴──────┴──────────┴───────────┴───┴──────────┴──────┴───────┴───────┘
Columns: am, wt, rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, rownames, mpg, cyl, disp, hp, drat, qsec, vs, gear, carb
The same mechanism is available in comparisons()
and slopes()
. To estimate the partial derivative of mpg
with respect to wt
, when am
is equal to 0 and 1, while other predictors are held at their means:
am | Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % | hp |
---|---|---|---|---|---|---|---|---|
Type: response | ||||||||
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, am, predicted_lo, predicted_hi, predicted, hp, wt, mpg | ||||||||
0 | -2.68 | 1.42 | -1.89 | 0.0594 | 4.1 | -5.46 | 0.106 | 147 |
1 | -5.43 | 2.15 | -2.52 | 0.0116 | 6.4 | -9.65 | -1.213 | 147 |
= slopes(
s
mod,= "wt",
variables = datagrid(mod, am = [0, 1]))
newdata print(s)
shape: (2, 10)
┌─────┬──────┬──────────┬──────────┬───┬─────────┬──────┬───────┬────────┐
│ am ┆ Term ┆ Contrast ┆ Estimate ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞═════╪══════╪══════════╪══════════╪═══╪═════════╪══════╪═══════╪════════╡
│ 0 ┆ wt ┆ dY/dX ┆ -2.19 ┆ … ┆ 0.0312 ┆ 5 ┆ -4.19 ┆ -0.198 │
│ 1 ┆ wt ┆ dY/dX ┆ -4.36 ┆ … ┆ 0.0851 ┆ 3.55 ┆ -9.32 ┆ 0.603 │
└─────┴──────┴──────────┴──────────┴───┴─────────┴──────┴───────┴────────┘
Columns: am, rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, gear, carb
We can also plot how predictions, comparisons, or slopes change across different values of the predictors using three powerful plotting functions:
-
plot_predictions
: Conditional Adjusted Predictions -
plot_comparisons
: Conditional Comparisons -
plot_slopes
: Conditional Marginal Effects
For example, this plot shows the outcomes predicted by our model for different values of the wt
and am
variables:
plot_predictions(mod, condition = list("hp", "wt" = "threenum", "am"))
= {
cond "hp": None,
"wt": [mtcars["wt"].mean() - mtcars["wt"].std(),
"wt"].mean(),
mtcars["wt"].mean() + mtcars["wt"].std()],
mtcars["am": None
}= cond) plot_predictions(mod, condition
<string>:1: FutureWarning: Using repr(plot) to draw and show the plot figure is deprecated and will be removed in a future version. Use plot.show().
<Figure Size: (640 x 480)>
This plot shows how the derivative of mpg
with respect to am
varies as a function of wt
and hp
:
plot_slopes(mod, variables = "am", condition = list("hp", "wt" = "minmax"))
plot_slopes(mod,= "am",
variables = {"hp": None, "wt": [mtcars["wt"].min(), mtcars["wt"].max()]}
condition )
<string>:1: FutureWarning: Using repr(plot) to draw and show the plot figure is deprecated and will be removed in a future version. Use plot.show().
<Figure Size: (640 x 480)>
See this vignette for more information: Plots, interactions, predictions, contrasts, and slopes
Aggregation
Since predictions, comparisons, and slopes are conditional quantities, they can be a bit unwieldy. Often, it can be useful to report a one-number summary instead of one estimate per observation. Instead of presenting “conditional” estimates, some methodologists recommend reporting “marginal” estimates, that is, an average of unit-level estimates.
(This use of the word “marginal” as “averaging” should not be confused with the term “marginal effect” which, in the econometrics tradition, corresponds to a partial derivative, or the effect of a “small/marginal” change.)
To marginalize (average over) our unit-level estimates, we can use the by
argument or the one of the convenience functions: avg_predictions()
, avg_comparisons()
, or avg_slopes()
. For example, both of these commands give us the same result: the average predicted outcome in the mtcars
dataset:
avg_predictions(mod)
Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|
Type: response | ||||||
Columns: estimate, std.error, statistic, p.value, s.value, conf.low, conf.high | ||||||
20.1 | 0.39 | 51.5 | <0.001 | Inf | 19.3 | 20.9 |
= avg_predictions(mod)
p print(p)
shape: (1, 7)
┌──────────┬───────────┬──────┬─────────┬─────┬──────┬───────┐
│ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞══════════╪═══════════╪══════╪═════════╪═════╪══════╪═══════╡
│ 20.1 ┆ 0.39 ┆ 51.5 ┆ 0 ┆ inf ┆ 19.3 ┆ 20.9 │
└──────────┴───────────┴──────┴─────────┴─────┴──────┴───────┘
Columns: estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
This is equivalent to manual computation by:
The main marginaleffects
functions all include a by
argument, which allows us to marginalize within sub-groups of the data. For example,
avg_comparisons(mod, by = "am")
Term | Contrast | am | Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|---|---|---|
Type: response | |||||||||
Columns: term, contrast, am, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high | |||||||||
am | 1 - 0 | 0 | -1.3830 | 2.5250 | -0.548 | 0.58388 | 0.8 | -6.3319 | 3.56589 |
am | 1 - 0 | 1 | 1.9029 | 2.3086 | 0.824 | 0.40980 | 1.3 | -2.6219 | 6.42773 |
hp | +1 | 0 | -0.0343 | 0.0159 | -2.160 | 0.03079 | 5.0 | -0.0654 | -0.00317 |
hp | +1 | 1 | -0.0436 | 0.0213 | -2.050 | 0.04039 | 4.6 | -0.0854 | -0.00191 |
wt | +1 | 0 | -2.4799 | 1.2316 | -2.014 | 0.04406 | 4.5 | -4.8939 | -0.06595 |
wt | +1 | 1 | -6.0718 | 1.9762 | -3.072 | 0.00212 | 8.9 | -9.9451 | -2.19846 |
cmp = avg_comparisons(mod, by = "am")
print(cmp)
shape: (6, 10)
┌─────┬──────┬──────────────────────────┬──────────┬───┬─────────┬───────┬─────────┬──────────┐
│ am ┆ Term ┆ Contrast ┆ Estimate ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞═════╪══════╪══════════════════════════╪══════════╪═══╪═════════╪═══════╪═════════╪══════════╡
│ 0 ┆ am ┆ mean(True) - mean(False) ┆ -1.38 ┆ … ┆ 0.584 ┆ 0.776 ┆ -6.33 ┆ 3.57 │
│ 1 ┆ am ┆ mean(True) - mean(False) ┆ 1.9 ┆ … ┆ 0.41 ┆ 1.29 ┆ -2.62 ┆ 6.43 │
│ 0 ┆ hp ┆ +1 ┆ -0.0343 ┆ … ┆ 0.0308 ┆ 5.02 ┆ -0.0654 ┆ -0.00317 │
│ 1 ┆ hp ┆ +1 ┆ -0.0436 ┆ … ┆ 0.0404 ┆ 4.63 ┆ -0.0854 ┆ -0.00191 │
│ 0 ┆ wt ┆ +1 ┆ -2.48 ┆ … ┆ 0.0441 ┆ 4.5 ┆ -4.89 ┆ -0.066 │
│ 1 ┆ wt ┆ +1 ┆ -6.07 ┆ … ┆ 0.00212 ┆ 8.88 ┆ -9.95 ┆ -2.2 │
└─────┴──────┴──────────────────────────┴──────────┴───┴─────────┴───────┴─────────┴──────────┘
Columns: am, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Marginal Means are a special case of predictions, which are marginalized (or averaged) across a balanced grid of categorical predictors. To illustrate, we estimate a new model with categorical predictors:
dat <- mtcars
dat$am <- as.logical(dat$am)
dat$cyl <- as.factor(dat$cyl)
mod_cat <- lm(mpg ~ am + cyl + hp, data = dat)
= pl.read_csv("https://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv") \
dat "am").cast(pl.Boolean),
.with_columns(pl.col("cyl").cast(pl.Utf8))
pl.col(= smf.ols('mpg ~ am + cyl + hp', data=dat.to_pandas()).fit() mod_cat
We can compute marginal means manually using the functions already described:
avg_predictions(
mod_cat,
newdata = "balanced",
by = "am")
am | Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|---|
Type: response | |||||||
Columns: am, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high | |||||||
FALSE | 18.3 | 0.785 | 23.3 | <0.001 | 397.4 | 16.8 | 19.9 |
TRUE | 22.5 | 0.834 | 26.9 | <0.001 | 528.6 | 20.8 | 24.1 |
predictions(
mod_cat,= datagrid(grid_type = "balanced"),
newdata = "am")
by print(p)
The Marginal Means vignette offers more detail.
Uncertainty
The marginaleffects
package reports uncertainty estimates for all the quantities it computes: predictions, comparisons, slopes, etc. By default, standard errors are computed using the delta method and classical standard errors. These standard errors are fast to compute, and have appealing properties in some, but not all cases. marginaleffects
supports several alternatives, including: Huber-White Heteroskedasticity Robust, Cluster-Robust, Bootstrap, and Simulation-based uncertainty estimates.
The Standard Errors vignette offers more detail. For now, it suffices to show two examples. First, we use the vcov
argument to report “HC3” (heteroskedasticity-consistent) standard errors.
avg_predictions(mod, by = "am", vcov = "HC3")
am | Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|---|
Type: response | |||||||
Columns: am, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high | |||||||
0 | 17.1 | 0.614 | 27.9 | <0.001 | 568.5 | 15.9 | 18.3 |
1 | 24.4 | 0.782 | 31.2 | <0.001 | 707.3 | 22.9 | 25.9 |
Not supported yet.
Second, we use the inferences()
function to compute bootstrap intervals using 500 resamples:
avg_predictions(mod, by = "am") |>
inferences(method = "boot", R = 500)
am | Estimate | Std. Error | 2.5 % | 97.5 % |
---|---|---|---|---|
Type: response | ||||
Columns: am, estimate, std.error, conf.low, conf.high | ||||
0 | 17.1 | 0.62 | 16.2 | 18.5 |
1 | 24.4 | 131.62 | 15.6 | 26.4 |
Not supported yet.
Tests
The hypotheses()
function and the hypothesis
argument can be used to conduct linear and non-linear hypothesis tests on model coefficients, or on any of the quantities computed by the functions introduced above.
Consider this model:
Can we reject the null hypothesis that the drat
coefficient is 2 times the size of the qsec
coefficient?
hypotheses(mod, "drat = 2 * qsec")
Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|
Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high | ||||||
-1.39 | 10.8 | -0.129 | 0.897 | 0.2 | -22.5 | 19.7 |
We can ask the same question but refer to parameters by position, with indices b1
, b2
, b3
, etc.:
hypotheses(mod, "b3 = 2 * b2")
Warning:
It is essential to check the order of estimates when specifying hypothesis tests using positional indices like b1, b2, etc. The indices of estimates can change depending on the order of rows in the original dataset, user-supplied arguments, model-fitting package, and version of `marginaleffects`.
It is also good practice to use assertions that ensure the order of estimates is consistent across different runs of the same code. Example:
```r
mod <- lm(mpg ~ am * carb, data = mtcars)
# assertion for safety
p <- avg_predictions(mod, by = 'carb')
stopifnot(p$carb[1] != 1 || p$carb[2] != 2)
# hypothesis test
avg_predictions(mod, by = 'carb', hypothesis = 'b1 - b2 = 0')
```
Disable this warning with: `options(marginaleffects_safe = FALSE)`
This warning appears once per session.
Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|
Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high | ||||||
-1.39 | 10.8 | -0.129 | 0.897 | 0.2 | -22.5 | 19.7 |
= hypotheses(mod, "b3 = 2 * b2")
h print(h)
shape: (1, 8)
┌─────────┬──────────┬───────────┬────────┬─────────┬───────┬───────┬───────┐
│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞═════════╪══════════╪═══════════╪════════╪═════════╪═══════╪═══════╪═══════╡
│ b3=2*b2 ┆ -1.39 ┆ 10.8 ┆ -0.129 ┆ 0.897 ┆ 0.156 ┆ -22.5 ┆ 19.7 │
└─────────┴──────────┴───────────┴────────┴─────────┴───────┴───────┴───────┘
Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
The main functions in marginaleffects
all have a hypothesis
argument, which means that we can do complex model testing. For example, consider two slope estimates:
qsec | Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|---|
Type: response | |||||||
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, qsec, predicted_lo, predicted_hi, predicted, drat, mpg | |||||||
14.5 | 5.22 | 3.79 | 1.38 | 0.1682 | 2.6 | -2.206 | 12.7 |
22.9 | 10.24 | 5.15 | 1.99 | 0.0469 | 4.4 | 0.139 | 20.3 |
= slopes(
s
mod,= "drat",
variables = datagrid(qsec = [mtcars["qsec"].min(), mtcars["qsec"].max()]))
newdata print(s)
shape: (2, 10)
┌──────┬──────┬──────────┬──────────┬───┬─────────┬──────┬────────┬───────┐
│ qsec ┆ Term ┆ Contrast ┆ Estimate ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪══════╪══════════╪══════════╪═══╪═════════╪══════╪════════╪═══════╡
│ 14.5 ┆ drat ┆ dY/dX ┆ 5.22 ┆ … ┆ 0.167 ┆ 2.58 ┆ -2.18 ┆ 12.6 │
│ 22.9 ┆ drat ┆ dY/dX ┆ 10.2 ┆ … ┆ 0.0481 ┆ 4.38 ┆ 0.0871 ┆ 20.4 │
└──────┴──────┴──────────┴──────────┴───┴─────────┴──────┴────────┴───────┘
Columns: qsec, rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, rownames, mpg, cyl, disp, hp, drat, wt, vs, am, gear, carb
Are these two slopes significantly different from one another? To test this, we can use the hypothesis
argument:
= slopes(
s
mod,= "b1 = b2",
hypothesis = "drat",
variables = datagrid(qsec = [mtcars["qsec"].min(), mtcars["qsec"].max()]))
newdata print(s)
shape: (1, 8)
┌───────┬──────────┬───────────┬────────┬─────────┬───────┬───────┬───────┐
│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞═══════╪══════════╪═══════════╪════════╪═════════╪═══════╪═══════╪═══════╡
│ b1=b2 ┆ -5.02 ┆ 8.53 ┆ -0.588 ┆ 0.556 ┆ 0.846 ┆ -21.7 ┆ 11.7 │
└───────┴──────────┴───────────┴────────┴─────────┴───────┴───────┴───────┘
Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Alternatively, we can also refer to values with term names (when they are unique):
avg_slopes(mod)
Term | Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|---|
Type: response | |||||||
Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high | |||||||
drat | 7.22 | 1.365 | 5.29 | < 0.001 | 23.0 | 4.548 | 9.90 |
qsec | 1.12 | 0.433 | 2.60 | 0.00945 | 6.7 | 0.275 | 1.97 |
avg_slopes(mod, hypothesis = "drat = qsec")
Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % |
---|---|---|---|---|---|---|
Type: response | ||||||
Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high | ||||||
6.1 | 1.45 | 4.2 | <0.001 | 15.2 | 3.25 | 8.95 |
= avg_slopes(mod)
s print(s)
shape: (2, 9)
┌──────┬─────────────┬──────────┬───────────┬───┬──────────┬──────┬───────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪═════════════╪══════════╪═══════════╪═══╪══════════╪══════╪═══════╪═══════╡
│ drat ┆ mean(dY/dX) ┆ 7.22 ┆ 1.37 ┆ … ┆ 1.21e-07 ┆ 23 ┆ 4.55 ┆ 9.9 │
│ qsec ┆ mean(dY/dX) ┆ 1.12 ┆ 0.434 ┆ … ┆ 0.00957 ┆ 6.71 ┆ 0.274 ┆ 1.97 │
└──────┴─────────────┴──────────┴───────────┴───┴──────────┴──────┴───────┴───────┘
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
= avg_slopes(mod, hypothesis = "drat = qsec")
s print(s)
shape: (1, 8)
┌───────────┬──────────┬───────────┬─────┬──────────┬──────┬──────┬───────┐
│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞═══════════╪══════════╪═══════════╪═════╪══════════╪══════╪══════╪═══════╡
│ drat=qsec ┆ 6.1 ┆ 1.45 ┆ 4.2 ┆ 2.66e-05 ┆ 15.2 ┆ 3.25 ┆ 8.95 │
└───────────┴──────────┴───────────┴─────┴──────────┴──────┴──────┴───────┘
Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Now, imagine that for theoretical (or substantive or clinical) reasons, we only care about slopes larger than 2. We can use the equivalence
argument to conduct an equivalence test:
avg_slopes(mod, equivalence = c(-2, 2))
Term | Estimate | Std. Error | z | Pr(>|z|) | S | 2.5 % | 97.5 % | p (NonSup) | p (NonInf) | p (Equiv) |
---|---|---|---|---|---|---|---|---|---|---|
Type: response | ||||||||||
Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, statistic.noninf, statistic.nonsup, p.value.noninf, p.value.nonsup, p.value.equiv | ||||||||||
drat | 7.22 | 1.365 | 5.29 | < 0.001 | 23.0 | 4.548 | 9.90 | 0.9999 | <0.001 | 0.9999 |
qsec | 1.12 | 0.433 | 2.60 | 0.00945 | 6.7 | 0.275 | 1.97 | 0.0216 | <0.001 | 0.0216 |
= avg_slopes(mod, equivalence = [-2., 2.])
s print(s)
shape: (2, 9)
┌──────┬─────────────┬──────────┬───────────┬───┬──────────┬──────┬───────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪═════════════╪══════════╪═══════════╪═══╪══════════╪══════╪═══════╪═══════╡
│ drat ┆ mean(dY/dX) ┆ 7.22 ┆ 1.37 ┆ … ┆ 1.21e-07 ┆ 23 ┆ 4.55 ┆ 9.9 │
│ qsec ┆ mean(dY/dX) ┆ 1.12 ┆ 0.434 ┆ … ┆ 0.00957 ┆ 6.71 ┆ 0.274 ┆ 1.97 │
└──────┴─────────────┴──────────┴───────────┴───┴──────────┴──────┴───────┴───────┘
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, statistic_noninf, statistic_nonsup, p_value_noninf, p_value_nonsup, p_value_equiv
See the Hypothesis Tests and Custom Contrasts vignette for background, details, and for instructions on how to conduct hypothesis tests in more complex situations.