22  Extensions

This vignette shows how to add support for new models and add new functionality for supported models.

22.1 Support a new model type

It is very easy to add support for new models in marginaleffects. All we need is to set a global option and define 4 very simple functions.

If you add support for a class of models produced by a CRAN package, please consider submitting your code for inclusion in the package: https://github.com/vincentarelbundock/marginaleffects

If you add support for a class of models produced by a package hosted elsewhere than CRAN, you can submit it for inclusion in the unsupported user-submitted library of extensions: Currently

The rest of this section illustrates how to add support for a very simple lm_manual model.

22.1.1 Fit function

To begin, we define a function which fits a model. Normally, this function will be supplied by a modeling package published on CRAN. Here, we create a function called lm_manual(), which estimates a linear regression model using simple linear algebra operates:

lm_manual <- function(f, data, ...) {
    # design matrix
    X <- model.matrix(f, data = data)
    # response matrix
    Y <- data[[as.character(f[2])]]
    # coefficients
    b <- solve(crossprod(X)) %*% crossprod(X, Y)
    Yhat <- X %*% b
    # variance-covariance matrix
    e <- Y - Yhat
    df <- nrow(X) - ncol(X)
    s2 <- sum(e^2) / df
    V <- s2 * solve(crossprod(X))
    # model object
    out <- list(
        d = data,
        f = f,
        X = X,
        Y = Y,
        V = V,
        b = b)
    # class name: lm_manual
    class(out) <- c("lm_manual", "list")
    return(out)
}

Important: The custom fit function must assign a new class name to the object it returns. In the example above, the model is assigned to be of class lm_manual (see the penultimate line of code in the function).

Our new function replicates the results of lm():

model <- lm_manual(mpg ~ hp + drat, data = mtcars)
model$b
#>                    [,1]
#> (Intercept) 10.78986122
#> hp          -0.05178665
#> drat         4.69815776

model_lm <- lm(mpg ~ hp + drat, data = mtcars)
coef(model_lm)
#> (Intercept)          hp        drat 
#> 10.78986122 -0.05178665  4.69815776

22.1.2 marginaleffects extension

To extend support in marginaleffects, the first step is to tell the package that our new class is supported. We do this by defining a global option:

library(marginaleffects)

options("marginaleffects_model_classes" = "lm_manual")

Then, we define 4 methods:

  1. get_coef()
    • Mandatory arguments: model, ...
    • Returns: named vector of parameters (coefficients).
  2. set_coef()
    • Mandatory arguments: model, coefs (named vector of coefficients), ...
    • Returns: A new model object in which the original coefficients were replaced by the new vector.
    • Example
  3. get_vcov()
    • Mandatory arguments: model, ....
    • Optional arguments: vcov
    • Returns: A named square variance-covariance matrix.
  4. get_predict()
    • Mandatory arguments: model, newdata (data frame), ...
    • Option arguments: type and other model-specific arguments.
    • Returns: A data frame with two columns: a unique rowid and a column of estimate values.

Note that each of these methods will be named with the suffix .lm_manual to indicate that they should be used whenever marginaleffects needs to process an object of class lm_manual.

get_coef.lm_manual <- function(model, ...) {
    b <- model$b
    b <- setNames(as.vector(b), row.names(b))
    return(b)
}

set_coef.lm_manual <- function(model, coefs, ...) {
    out <- model
    out$b <- coefs
    return(out)
}

get_vcov.lm_manual <- function(model, ...) {
    return(model$V)
}

get_predict.lm_manual <- function(model, newdata, ...) {
    newX <- model.matrix(model$f, data = newdata)
    Yhat <- newX %*% model$b
    out <- data.frame(
        rowid = seq_len(nrow(Yhat)),
        estimate = as.vector(Yhat))
    return(out)
}

The methods we just defined work as expected:

get_coef(model)
#> (Intercept)          hp        drat 
#> 10.78986122 -0.05178665  4.69815776

get_vcov(model)
#>             (Intercept)            hp         drat
#> (Intercept) 25.78356135 -3.054007e-02 -5.836030687
#> hp          -0.03054007  8.635615e-05  0.004969385
#> drat        -5.83603069  4.969385e-03  1.419990359

get_predict(model, newdata = head(mtcars))
#>   rowid estimate
#> 1     1 23.41614
#> 2     2 23.41614
#> 3     3 24.06161
#> 4     4 19.56366
#> 5     5 16.52639
#> 6     6 18.31918

Now we can use the avg_slopes function:

avg_slopes(model, newdata = mtcars, variables = c("hp", "drat"))
#> 
#>  Term Estimate Std. Error     z Pr(>|z|)    S 2.5 %  97.5 %
#>  drat   4.6982    1.19162  3.94   <0.001 13.6  2.36  7.0337
#>  hp    -0.0518    0.00929 -5.57   <0.001 25.2 -0.07 -0.0336
#> 
#> Type:  response 
#> Comparison: mean(dY/dX)
#> Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted

predictions(model, newdata = mtcars) |> head()
#> 
#>  Estimate Std. Error    z Pr(>|z|)     S 2.5 % 97.5 %  mpg cyl disp  hp drat   wt qsec vs am gear carb
#>      23.4      0.671 34.9   <0.001 883.6  22.1   24.7 21.0   6  160 110 3.90 2.62 16.5  0  1    4    4
#>      23.4      0.671 34.9   <0.001 883.6  22.1   24.7 21.0   6  160 110 3.90 2.88 17.0  0  1    4    4
#>      24.1      0.720 33.4   <0.001 810.2  22.6   25.5 22.8   4  108  93 3.85 2.32 18.6  1  1    4    1
#>      19.6      0.999 19.6   <0.001 281.4  17.6   21.5 21.4   6  258 110 3.08 3.21 19.4  1  0    3    1
#>      16.5      0.735 22.5   <0.001 369.1  15.1   18.0 18.7   8  360 175 3.15 3.44 17.0  0  0    3    2
#>      18.3      1.343 13.6   <0.001 138.3  15.7   21.0 18.1   6  225 105 2.76 3.46 20.2  1  0    3    1
#> 
#> Type:  response 
#> Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb

Note that, for custom model, we typically have to supply values for the newdata and variables arguments explicitly.

22.2 Merge your extension into the main package

If you wrote a working extension, please consider contributing back to the community by submitting your code for inclusion in the main package. To do this, all you need to do is follow the steps above, and then:

  1. Add the package to the permanent list of supported models, to avoid calling options() in every session: R/sanitize_model.R
  2. Add the package to the vignette of supported models by editing: data-raw/supported_models.csv
  3. Add a bullet point to the news file: NEWS.md

22.3 Modify or extend supported models

Let’s say you want to estimate a model using the mclogit::mblogit function. That package is already supported by marginaleffects, but you want to use a type (scale) of predictions that is not currently supported: a “centered link scale.”

To achieve this, we would need to override the get_predict.mblogit() method. However, it can be unsafe to reassign methods supplied by a package that we loaded with library. To be safe, we assign a new model class to our object (“customclass”) which will inherit from mblogit. Then, we define a get_predict.customclass method to make our new kinds of predictions.

Load libraries, estimate a model:

library(mclogit)
library(data.table)

model <- mblogit(
    factor(gear) ~ am + mpg,
    data = mtcars,
    trace = FALSE)

Tell marginaleffects that we are adding support for a new class model models, and assign a new inherited class name to a duplicate of the model object:

options("marginaleffects_model_classes" = "customclass")

model_custom <- model

class(model_custom) <- c("customclass", class(model))

Define a new get_predict.customclass method. We use the default predict() function to obtain predictions. Since this is a multinomial model, predict() returns a matrix of predictions with one column per level of the response variable.

Our new get_predict.customclass method takes this matrix of predictions, modifies it, and reshapes it to return a data frame with three columns: rowid, group, and estimate:

get_predict.customclass <- function(model, newdata, ...) {
    out <- predict(model, newdata = newdata, type = "link")
    out <- cbind(0, out)
    colnames(out)[1] <- dimnames(model$D)[[1]][[1]]
    out <- out - rowMeans(out)
    out <- as.data.frame(out)
    out$rowid <- seq_len(nrow(out))
    out <- data.table(out)
    out <- melt(
        out,
        id.vars = "rowid",
        value.name = "estimate",
        variable.name = "group")
}

Finally, we can call any slopes function and obtain results. Notice that our object of class customclass now produces different results than the default mblogit object:

avg_predictions(model)
#> 
#>  Group Estimate Std. Error     z Pr(>|z|)    S 2.5 % 97.5 %
#>      3    0.469     0.0444 10.56  < 0.001 84.2 0.382  0.556
#>      4    0.375     0.0670  5.60  < 0.001 25.5 0.244  0.506
#>      5    0.156     0.0501  3.12  0.00183  9.1 0.058  0.255
#> 
#> Type:  response 
#> Columns: group, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high

avg_predictions(model_custom)
#> 
#>  Group Estimate Std. Error         z Pr(>|z|)   S 2.5 % 97.5 %
#>      3    -1.42       2525 -0.000561    1.000 0.0 -4950   4947
#>      4     6.36       1779  0.003578    0.997 0.0 -3480   3493
#>      5    -4.95       3074 -0.001609    0.999 0.0 -6030   6020
#> 
#> Type:  response 
#> Columns: group, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high