30 Missing Data
The marginaleffects
package offers convenience functions to compute and display predictions, contrasts, and marginal effects from models with multiple imputation from the mice
and Amelia
packages. The workflow follows Rubin’s rules (Rubin, 1987, p. 76), via the following steps:
- Impute \(M\) data sets.
- Fit a model in each of the \(M\) imputed data sets.
- Compute marginal effects in each of the \(M\) data sets.
- Pool results.
To highlight the workflow, we consider a simple linear regression model, although the same workflow should work with any model type that is fit using a formula interface and a data
argument.
marginaleffects
directly supports the mice
and Amelia
imputation packages, as well as any other package that can return a list of imputed data frames. This is demonstrated below using the iris
dataset, in which we insert missing observations randomly and then impute missing values using several packages.
30.1 mice
First, we impute the dataset using the mice
package:
Then, we use the standard mice
syntax to produce an object of class mira
with all the models:
Finally, we feed the mira
object to a marginaleffects
function:
mfx_mice <- avg_slopes(mod_mice, by = "Species")
mfx_mice
#>
#> Term Contrast Species Estimate Std. Error t Pr(>|t|) S 2.5 % 97.5 % Df
#> Sepal.Length dY/dX setosa 0.0684 0.0560 1.222 0.22747 2.1 -0.0440 0.181 49.9
#> Sepal.Length dY/dX versicolor 0.0540 0.0558 0.968 0.33850 1.6 -0.0585 0.166 42.6
#> Sepal.Length dY/dX virginica 0.0582 0.0512 1.137 0.26149 1.9 -0.0449 0.161 44.8
#> Sepal.Width dY/dX setosa 0.1890 0.0836 2.260 0.02632 5.2 0.0228 0.355 87.0
#> Sepal.Width dY/dX versicolor 0.2092 0.0772 2.710 0.00977 6.7 0.0533 0.365 41.1
#> Sepal.Width dY/dX virginica 0.2242 0.1041 2.155 0.03896 4.7 0.0121 0.436 31.3
#> Species versicolor - setosa setosa 1.1399 0.0977 11.668 < 0.001 49.7 0.9435 1.336 48.6
#> Species virginica - setosa setosa 1.7408 0.1108 15.709 < 0.001 67.5 1.5182 1.963 50.3
#> Species versicolor - setosa versicolor 1.1399 0.0977 11.668 < 0.001 49.7 0.9435 1.336 48.6
#> Species virginica - setosa versicolor 1.7408 0.1108 15.709 < 0.001 67.5 1.5182 1.963 50.3
#> Species versicolor - setosa virginica 1.1399 0.0977 11.668 < 0.001 49.7 0.9435 1.336 48.6
#> Species virginica - setosa virginica 1.7408 0.1108 15.709 < 0.001 67.5 1.5182 1.963 50.3
#>
#> Type: response
30.2 Amelia
With Amelia
, the workflow is essentially the same. First, we impute using Amelia
:
Then, we use Amelia
syntax to produce an object of class amest
with all the models:
Finally, we feed the amest
object to a marginaleffects
function:
mfx_amelia <- avg_slopes(mod_amelia, by = "Species")
mfx_amelia
#>
#> Term Contrast Species Estimate Std. Error t Pr(>|t|) S 2.5 % 97.5 % Df
#> Sepal.Length dY/dX setosa 0.3878 0.0907 4.278 < 0.001 11.8 0.200 0.5753 23.1
#> Sepal.Length dY/dX versicolor 0.3231 0.0802 4.030 < 0.001 11.4 0.159 0.4872 28.8
#> Sepal.Length dY/dX virginica 0.3467 0.0799 4.340 < 0.001 12.1 0.182 0.5118 23.5
#> Sepal.Width dY/dX setosa -0.2079 0.1491 -1.395 0.17399 2.5 -0.513 0.0973 28.4
#> Sepal.Width dY/dX versicolor -0.1157 0.1168 -0.991 0.33068 1.6 -0.355 0.1239 26.9
#> Sepal.Width dY/dX virginica -0.0452 0.1272 -0.355 0.72426 0.5 -0.303 0.2122 38.9
#> Species versicolor - setosa setosa 0.6127 0.1731 3.541 0.00217 8.8 0.251 0.9748 19.1
#> Species virginica - setosa setosa 1.0364 0.2004 5.171 < 0.001 13.8 0.615 1.4582 17.6
#> Species versicolor - setosa versicolor 0.6127 0.1731 3.541 0.00217 8.8 0.251 0.9748 19.1
#> Species virginica - setosa versicolor 1.0364 0.2004 5.171 < 0.001 13.8 0.615 1.4582 17.6
#> Species versicolor - setosa virginica 0.6127 0.1731 3.541 0.00217 8.8 0.251 0.9748 19.1
#> Species virginica - setosa virginica 1.0364 0.2004 5.171 < 0.001 13.8 0.615 1.4582 17.6
#>
#> Type: response
30.3 Other imputation packages: missRanger
, or lists of imputed data frames.
Several R
packages can impute missing data. Indeed, the Missing Data CRAN View
lists at least a dozen alternatives. Since user interfaces change a lot from package to package, marginaleffects
supports a single workflow that can be used, with some adaptation, with all imputation packages:
- Use an external package to create a list of imputed data frames.
- Apply the
datalist2mids()
function from themiceadds
package to convert the list of imputed data frames to amids
object. - Use the
with()
function to fit models to createmira
object, as illustrated in themice
andAmelia
sections above. - Pass the
mira
object to amarginaleffects
function.
Consider the imputation package missRanger
, which generates a list of imputed datasets:
library(miceadds)
library(missRanger)
## convert lists of imputed datasets to `mids` objects
dat_missRanger <- replicate(20, missRanger(dat, verbose = 0), simplify = FALSE)
mids_missRanger <- datlist2mids(dat_missRanger)
## fit models
mod_missRanger <- with(mids_missRanger, lm(Petal.Width ~ Sepal.Length * Sepal.Width + Species))
## `missRanger` slopes
mfx_missRanger <- avg_slopes(mod_missRanger, by = "Species")
mfx_missRanger
#>
#> Term Contrast Species Estimate Std. Error t Pr(>|t|) S 2.5 % 97.5 % Df
#> Sepal.Length dY/dX setosa 0.0586 0.0434 1.35 0.17907 2.5 -0.0272 0.144 142
#> Sepal.Length dY/dX versicolor 0.0615 0.0392 1.57 0.11884 3.1 -0.0160 0.139 142
#> Sepal.Length dY/dX virginica 0.0605 0.0373 1.62 0.10724 3.2 -0.0133 0.134 142
#> Sepal.Width dY/dX setosa 0.2302 0.0725 3.17 0.00185 9.1 0.0868 0.374 142
#> Sepal.Width dY/dX versicolor 0.2260 0.0561 4.03 < 0.001 13.4 0.1152 0.337 142
#> Sepal.Width dY/dX virginica 0.2229 0.0688 3.24 0.00148 9.4 0.0869 0.359 142
#> Species versicolor - setosa setosa 1.1629 0.0725 16.04 < 0.001 109.4 1.0196 1.306 142
#> Species virginica - setosa setosa 1.7867 0.0849 21.03 < 0.001 148.5 1.6188 1.955 142
#> Species versicolor - setosa versicolor 1.1629 0.0725 16.04 < 0.001 109.4 1.0196 1.306 142
#> Species virginica - setosa versicolor 1.7867 0.0849 21.03 < 0.001 148.5 1.6188 1.955 142
#> Species versicolor - setosa virginica 1.1629 0.0725 16.04 < 0.001 109.4 1.0196 1.306 142
#> Species virginica - setosa virginica 1.7867 0.0849 21.03 < 0.001 148.5 1.6188 1.955 142
#>
#> Type: response
30.4 Comparing results with different imputation software
We can use the modelsummary
package to compare the results with listwise deletion to the results using different imputations software:
library(modelsummary)
## listwise deletion slopes
mod_lwd <- lm(Petal.Width ~ Sepal.Length * Sepal.Width + Species, data = dat)
mfx_lwd <- avg_slopes(mod_lwd, by = "Species")
## regression table
models <- list(
"LWD" = mfx_lwd,
"mice" = mfx_mice,
"Amelia" = mfx_amelia,
"missRanger" = mfx_missRanger)
modelsummary(models, shape = term : contrast + Species ~ model)
Species | LWD | mice | Amelia | missRanger | |
---|---|---|---|---|---|
Sepal.Length dY/dX | setosa | 0.033 | 0.068 | 0.388 | 0.059 |
(0.061) | (0.056) | (0.091) | (0.043) | ||
versicolor | 0.050 | 0.054 | 0.323 | 0.061 | |
(0.061) | (0.056) | (0.080) | (0.039) | ||
virginica | 0.043 | 0.058 | 0.347 | 0.061 | |
(0.058) | (0.051) | (0.080) | (0.037) | ||
Sepal.Width dY/dX | setosa | 0.274 | 0.189 | -0.208 | 0.230 |
(0.091) | (0.084) | (0.149) | (0.073) | ||
versicolor | 0.255 | 0.209 | -0.116 | 0.226 | |
(0.074) | (0.077) | (0.117) | (0.056) | ||
virginica | 0.234 | 0.224 | -0.045 | 0.223 | |
(0.083) | (0.104) | (0.127) | (0.069) | ||
Species versicolor - setosa | setosa | 1.157 | 1.140 | 0.613 | 1.163 |
(0.097) | (0.098) | (0.173) | (0.073) | ||
versicolor | 1.157 | 1.140 | 0.613 | 1.163 | |
(0.097) | (0.098) | (0.173) | (0.073) | ||
virginica | 1.157 | 1.140 | 0.613 | 1.163 | |
(0.097) | (0.098) | (0.173) | (0.073) | ||
Species virginica - setosa | setosa | 1.839 | 1.741 | 1.036 | 1.787 |
(0.123) | (0.111) | (0.200) | (0.085) | ||
versicolor | 1.839 | 1.741 | 1.036 | 1.787 | |
(0.123) | (0.111) | (0.200) | (0.085) | ||
virginica | 1.839 | 1.741 | 1.036 | 1.787 | |
(0.123) | (0.111) | (0.200) | (0.085) | ||
Num.Obs. | 60 | 150 | 150 | 150 | |
Num.Imp. | 20 | 20 | 20 | ||
R2 | 0.953 | 0.930 | 0.853 | 0.948 | |
R2 Adj. | 0.949 | 0.928 | 0.848 | 0.946 | |
AIC | -34.0 | ||||
BIC | -19.3 | ||||
Log.Lik. | 23.997 | ||||
F | 220.780 | ||||
RMSE | 0.16 |
30.5 Passing new data arguments: newdata
, wts
, by
, etc.
Sometimes we want to pass arguments changing or specifying the data on which we will do our analysis using marginaleffects
. This can be for reasons such as wanting to specify the values or weights at which we evaluate e.g. avg_slopes()
, or due to the underlying models not robustly preserving all the original data columns (such as fixest
objects not saving their data in the fit object making it potentially challenging to retrieve, and even if retrievable it will not include the weights used during fitting as a column as wts
expects when given a string).
If we are not using multiple imputation, or if we want to just pass a single dataset to the several fitted models after multiple imputation, we can pass a single dataset to the newdata
argument. However, if we wish to supply each model in our list resulting after multiple imputation with a /different/ dataset on which to calculate results, we cannot use newdata
. Instead, in this case it can be useful to revert to a more manual (but still very easy) approach. Here is an example calculating avg_slopes
using a different set of weights for each of the fixest
models which we fit after multiple imputation.
set.seed(1024)
library(mice)
library(fixest)
library(marginaleffects)
dat <- mtcars
## insert missing values
dat$hp[sample(seq_len(nrow(mtcars)), 10)] <- NA
dat$mpg[sample(seq_len(nrow(mtcars)), 10)] <- NA
dat$gear[sample(seq_len(nrow(mtcars)), 10)] <- NA
## multiple imputation
dat <- mice(dat, m = 5, method = "sample", printFlag = FALSE)
dat <- complete(dat, action = "all")
## fit models
mod <- lapply(dat, \(x)
feglm(am ~ mpg * cyl + hp,
weight = ~gear,
family = binomial,
data = x))
## slopes without weights
lapply(seq_along(mod), \(i)
avg_slopes(mod[[i]], newdata = dat[[i]])) |>
mice::pool()
#> Class: mipo m = 5
#> term contrast m estimate ubar b t dfcom df riv lambda fmi
#> 1 cyl dY/dX 5 -0.134280454 7.097466e-04 2.347331e-03 3.526544e-03 27 2.803719 3.968737 0.7987416 0.8680966
#> 2 hp dY/dX 5 0.001649773 5.709036e-07 1.375452e-06 2.221446e-06 27 3.419709 2.891105 0.7430036 0.8230684
#> 3 mpg dY/dX 5 0.006082804 1.080647e-04 2.722234e-04 4.347329e-04 27 3.324494 3.022893 0.7514227 0.8300305
## slopes with weights
lapply(seq_along(mod), \(i)
avg_slopes(mod[[i]], newdata = dat[[i]], wts = "gear")) |>
mice::pool()
#> Class: mipo m = 5
#> term contrast m estimate ubar b t dfcom df riv lambda fmi
#> 1 cyl dY/dX 5 -0.135839444 7.281041e-04 2.481021e-03 3.705329e-03 27 2.752189 4.089010 0.8034981 0.8718206
#> 2 hp dY/dX 5 0.001671173 5.697747e-07 1.424648e-06 2.279352e-06 27 3.340200 3.000446 0.7500278 0.8288809
#> 3 mpg dY/dX 5 0.006251144 1.056103e-04 2.705239e-04 4.302390e-04 27 3.289588 3.073835 0.7545310 0.8325867