install.packages("marginaleffects")
1 Get Started
1.1 Installation
Install the latest CRAN release:
Install the development version:
install.packages(
c("marginaleffects", "insight"),
repos = c("https://vincentarelbundock.r-universe.dev", "https://easystats.r-universe.dev"))
Restart R
completely before moving on.
Install from PyPI:
pip install marginaleffects
1.2 Estimands: Predictions, Comparisons, and Slopes
The marginaleffects
package allows R
users to compute and plot three principal quantities of interest: (1) predictions, (2) comparisons, and (3) slopes. In addition, the package includes a convenience function to compute a fourth estimand, “marginal means”, which is a special case of averaged predictions. marginaleffects
can also average (or “marginalize”) unit-level (or “conditional”) estimates of all those quantities, and conduct hypothesis tests on them.
The outcome predicted by a fitted model on a specified scale for a given combination of values of the predictor variables, such as their observed values, their means, or factor levels. a.k.a. Fitted values, adjusted predictions.
predictions()
,avg_predictions()
,plot_predictions()
.
Compare the predictions made by a model for different regressor values (e.g., college graduates vs. others): contrasts, differences, risk ratios, odds, etc.
comparisons()
,avg_comparisons()
,plot_comparisons()
.
Partial derivative of the regression equation with respect to a regressor of interest. a.k.a. Marginal effects, trends.
slopes()
,avg_slopes()
,plot_slopes()
.
Predictions of a model, averaged across a “reference grid” of categorical predictors.
marginalmeans()
.
Hypothesis and Equivalence Tests:
Hypothesis and equivalence tests can be conducted on linear or non-linear functions of model coefficients, or on any of the quantities computed by the
marginaleffects
packages (predictions, slopes, comparisons, marginal means, etc.). Uncertainy estimates can be obtained via the delta method (with or without robust standard errors), bootstrap, or simulation.
Predictions, comparisons, and slopes are fundamentally unit-level (or “conditional”) quantities. Except in the simplest linear case, estimates will typically vary based on the values of all the regressors in a model. Each of the observations in a dataset is thus associated with its own prediction, comparison, and slope estimates. Below, we will see that it can be useful to marginalize (or “average over”) unit-level estimates to report an “average prediction”, “average comparison”, or “average slope”.
One ambiguous aspect of the definitions above is that the word “marginal” comes up in two different and opposite ways:
- In “marginal effects,” we refer to the effect of a tiny (marginal) change in the regressor on the outcome. This is a slope, or derivative.
- In “marginal means,” we refer to the process of marginalizing across rows of a prediction grid. This is an average, or integral.
On this website and in this package, we reserve the expression “marginal effect” to mean a “slope” or “partial derivative”.
The marginaleffects
package includes functions to estimate, average, plot, and summarize all of the estimands described above. The objects produced by marginaleffects
are “tidy”: they produce simple data frames in “long” format. They are also “standards-compliant” and work seamlessly with standard functions like summary()
, head()
, tidy()
, and glance()
, as well with external packages like modelsummary
or ggplot2
.
We now apply marginaleffects
functions to compute each of the estimands described above. First, we fit a linear regression model with multiplicative interactions:
library(marginaleffects)
mod <- lm(mpg ~ hp * wt * am, data = mtcars)
import polars as pl
import numpy as np
import statsmodels.formula.api as smf
from marginaleffects import *
= pl.read_csv("https://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv")
mtcars
= smf.ols("mpg ~ hp * wt * am", data = mtcars).fit() mod
Then, we call the predictions()
function. As noted above, predictions are unit-level estimates, so there is one specific prediction per observation. By default, the predictions()
function makes one prediction per observation in the dataset that was used to fit the original model. Since mtcars
has 32 rows, the predictions()
outcome also has 32 rows:
pre <- predictions(mod)
nrow(mtcars)
[1] 32
nrow(pre)
[1] 32
pre
Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
22.5 0.884 25.44 <0.001 471.7 20.8 24.2
20.8 1.194 17.42 <0.001 223.3 18.5 23.1
25.3 0.709 35.66 <0.001 922.7 23.9 26.7
20.3 0.704 28.75 <0.001 601.5 18.9 21.6
17.0 0.712 23.88 <0.001 416.2 15.6 18.4
--- 22 rows omitted. See ?avg_predictions and ?print.marginaleffects ---
29.6 1.874 15.80 <0.001 184.3 25.9 33.3
15.9 1.311 12.13 <0.001 110.0 13.3 18.5
19.4 1.145 16.95 <0.001 211.6 17.2 21.7
14.8 2.017 7.33 <0.001 42.0 10.8 18.7
21.5 1.072 20.02 <0.001 293.8 19.4 23.6
Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, mpg, hp, wt, am
Type: response
= predictions(mod)
pre
mtcars.shape
(32, 12)
pre.shape
(32, 20)
print(pre)
shape: (32, 7)
┌──────────┬───────────┬──────┬──────────┬──────┬──────┬───────┐
│ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞══════════╪═══════════╪══════╪══════════╪══════╪══════╪═══════╡
│ 22.5 ┆ 0.884 ┆ 25.4 ┆ 0 ┆ inf ┆ 20.7 ┆ 24.3 │
│ 20.8 ┆ 1.19 ┆ 17.4 ┆ 4e-15 ┆ 47.8 ┆ 18.3 ┆ 23.3 │
│ 25.3 ┆ 0.709 ┆ 35.7 ┆ 0 ┆ inf ┆ 23.8 ┆ 26.7 │
│ 20.3 ┆ 0.704 ┆ 28.8 ┆ 0 ┆ inf ┆ 18.8 ┆ 21.7 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ 15.9 ┆ 1.31 ┆ 12.1 ┆ 1e-11 ┆ 36.5 ┆ 13.2 ┆ 18.6 │
│ 19.4 ┆ 1.15 ┆ 16.9 ┆ 7.33e-15 ┆ 47 ┆ 17 ┆ 21.8 │
│ 14.8 ┆ 2.02 ┆ 7.33 ┆ 1.43e-07 ┆ 22.7 ┆ 10.6 ┆ 19 │
│ 21.5 ┆ 1.07 ┆ 20 ┆ 2.22e-16 ┆ 52 ┆ 19.2 ┆ 23.7 │
└──────────┴───────────┴──────┴──────────┴──────┴──────┴───────┘
Columns: rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
Now, we use the comparisons()
function to compute the difference in predicted outcome when each of the predictors is incremented by 1 unit (one predictor at a time, holding all others constant). Once again, comparisons are unit-level quantities. And since there are 3 predictors in the model and our data has 32 rows, we obtain 96 comparisons:
cmp <- comparisons(mod)
nrow(cmp)
[1] 96
cmp
Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
am 1 - 0 0.325 1.68 0.193 0.8467 0.2 -2.97 3.622
am 1 - 0 -0.544 1.57 -0.347 0.7287 0.5 -3.62 2.530
am 1 - 0 1.201 2.35 0.511 0.6090 0.7 -3.40 5.802
am 1 - 0 -1.703 1.87 -0.912 0.3618 1.5 -5.36 1.957
am 1 - 0 -0.615 1.68 -0.366 0.7146 0.5 -3.91 2.680
--- 86 rows omitted. See ?avg_comparisons and ?print.marginaleffects ---
wt +1 -6.518 1.88 -3.462 <0.001 10.9 -10.21 -2.828
wt +1 -1.653 3.74 -0.442 0.6588 0.6 -8.99 5.683
wt +1 -4.520 2.47 -1.830 0.0672 3.9 -9.36 0.321
wt +1 0.635 4.89 0.130 0.8966 0.2 -8.95 10.216
wt +1 -6.647 1.86 -3.572 <0.001 11.5 -10.29 -2.999
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted, mpg, hp, wt, am
Type: response
cmp = comparisons(mod)
cmp.shape
(96, 25)
print(cmp)
shape: (96, 9)
┌──────┬──────────┬──────────┬───────────┬───┬─────────┬───────┬─────────┬─────────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪══════════╪══════════╪═══════════╪═══╪═════════╪═══════╪═════════╪═════════╡
│ hp ┆ +1 ┆ -0.0369 ┆ 0.0185 ┆ … ┆ 0.0575 ┆ 4.12 ┆ -0.0751 ┆ 0.00128 │
│ hp ┆ +1 ┆ -0.0287 ┆ 0.0156 ┆ … ┆ 0.0788 ┆ 3.67 ┆ -0.0609 ┆ 0.00357 │
│ hp ┆ +1 ┆ -0.0466 ┆ 0.0226 ┆ … ┆ 0.0502 ┆ 4.32 ┆ -0.0932 ┆ 4.6e-05 │
│ hp ┆ +1 ┆ -0.0423 ┆ 0.0133 ┆ … ┆ 0.00401 ┆ 7.96 ┆ -0.0697 ┆ -0.0149 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ am ┆ 1 - 0 ┆ 2.11 ┆ 2.29 ┆ … ┆ 0.367 ┆ 1.45 ┆ -2.62 ┆ 6.83 │
│ am ┆ 1 - 0 ┆ 0.895 ┆ 1.64 ┆ … ┆ 0.591 ┆ 0.758 ┆ -2.5 ┆ 4.29 │
│ am ┆ 1 - 0 ┆ 4.03 ┆ 3.24 ┆ … ┆ 0.226 ┆ 2.15 ┆ -2.66 ┆ 10.7 │
│ am ┆ 1 - 0 ┆ -0.237 ┆ 1.59 ┆ … ┆ 0.883 ┆ 0.18 ┆ -3.51 ┆ 3.04 │
└──────┴──────────┴──────────┴───────────┴───┴─────────┴───────┴─────────┴─────────┘
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
The comparisons()
function allows customized queries. For example, what happens to the predicted outcome when the hp
variable increases from 100 to 120?
comparisons(mod, variables = list(hp = c(120, 100)))
Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
hp 120 - 100 -0.738 0.370 -1.995 0.04607 4.4 -1.463 -0.0129
hp 120 - 100 -0.574 0.313 -1.836 0.06640 3.9 -1.186 0.0388
hp 120 - 100 -0.931 0.452 -2.062 0.03922 4.7 -1.817 -0.0460
hp 120 - 100 -0.845 0.266 -3.182 0.00146 9.4 -1.366 -0.3248
hp 120 - 100 -0.780 0.268 -2.909 0.00362 8.1 -1.306 -0.2547
--- 22 rows omitted. See ?avg_comparisons and ?print.marginaleffects ---
hp 120 - 100 -1.451 0.705 -2.058 0.03958 4.7 -2.834 -0.0692
hp 120 - 100 -0.384 0.270 -1.422 0.15498 2.7 -0.912 0.1451
hp 120 - 100 -0.641 0.334 -1.918 0.05513 4.2 -1.297 0.0141
hp 120 - 100 -0.126 0.272 -0.463 0.64360 0.6 -0.659 0.4075
hp 120 - 100 -0.635 0.332 -1.911 0.05598 4.2 -1.286 0.0162
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted, mpg, hp, wt, am
Type: response
cmp = comparisons(mod, variables = {"hp": [120, 100]})
print(cmp)
shape: (32, 9)
┌──────┬───────────┬──────────┬───────────┬───┬─────────┬───────┬───────────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪═══════════╪══════════╪═══════════╪═══╪═════════╪═══════╪═══════════╪═══════╡
│ hp ┆ 100 - 120 ┆ 0.738 ┆ 0.37 ┆ … ┆ 0.0576 ┆ 4.12 ┆ -0.0256 ┆ 1.5 │
│ hp ┆ 100 - 120 ┆ 0.574 ┆ 0.313 ┆ … ┆ 0.0788 ┆ 3.67 ┆ -0.0713 ┆ 1.22 │
│ hp ┆ 100 - 120 ┆ 0.931 ┆ 0.452 ┆ … ┆ 0.0502 ┆ 4.32 ┆ -0.000918 ┆ 1.86 │
│ hp ┆ 100 - 120 ┆ 0.845 ┆ 0.266 ┆ … ┆ 0.00401 ┆ 7.96 ┆ 0.297 ┆ 1.39 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ hp ┆ 100 - 120 ┆ 0.384 ┆ 0.27 ┆ … ┆ 0.168 ┆ 2.57 ┆ -0.173 ┆ 0.941 │
│ hp ┆ 100 - 120 ┆ 0.641 ┆ 0.334 ┆ … ┆ 0.0671 ┆ 3.9 ┆ -0.0488 ┆ 1.33 │
│ hp ┆ 100 - 120 ┆ 0.126 ┆ 0.272 ┆ … ┆ 0.648 ┆ 0.626 ┆ -0.436 ┆ 0.688 │
│ hp ┆ 100 - 120 ┆ 0.635 ┆ 0.332 ┆ … ┆ 0.068 ┆ 3.88 ┆ -0.0507 ┆ 1.32 │
└──────┴───────────┴──────────┴───────────┴───┴─────────┴───────┴───────────┴───────┘
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
What happens to the predicted outcome when the wt
variable increases by 1 standard deviation about its mean?
comparisons(mod, variables = list(hp = "sd"))
Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
hp (x + sd/2) - (x - sd/2) -2.530 1.269 -1.995 0.04607 4.4 -5.02 -0.0441
hp (x + sd/2) - (x - sd/2) -1.967 1.072 -1.836 0.06640 3.9 -4.07 0.1332
hp (x + sd/2) - (x - sd/2) -3.193 1.549 -2.062 0.03922 4.7 -6.23 -0.1578
hp (x + sd/2) - (x - sd/2) -2.898 0.911 -3.182 0.00146 9.4 -4.68 -1.1133
hp (x + sd/2) - (x - sd/2) -2.675 0.919 -2.909 0.00362 8.1 -4.48 -0.8731
--- 22 rows omitted. See ?avg_comparisons and ?print.marginaleffects ---
hp (x + sd/2) - (x - sd/2) -4.976 2.418 -2.058 0.03958 4.7 -9.71 -0.2373
hp (x + sd/2) - (x - sd/2) -1.315 0.925 -1.422 0.15498 2.7 -3.13 0.4974
hp (x + sd/2) - (x - sd/2) -2.199 1.147 -1.918 0.05513 4.2 -4.45 0.0483
hp (x + sd/2) - (x - sd/2) -0.432 0.933 -0.463 0.64360 0.6 -2.26 1.3970
hp (x + sd/2) - (x - sd/2) -2.177 1.139 -1.911 0.05598 4.2 -4.41 0.0556
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted, mpg, hp, wt, am
Type: response
cmp = comparisons(mod, variables = {"hp": "sd"})
print(cmp)
shape: (32, 9)
┌──────┬────────────────────┬──────────┬───────────┬───┬─────────┬───────┬───────┬─────────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪════════════════════╪══════════╪═══════════╪═══╪═════════╪═══════╪═══════╪═════════╡
│ hp ┆ +68.56286848932059 ┆ -2.53 ┆ 1.27 ┆ … ┆ 0.0576 ┆ 4.12 ┆ -5.15 ┆ 0.0878 │
│ hp ┆ +68.56286848932059 ┆ -1.97 ┆ 1.07 ┆ … ┆ 0.0788 ┆ 3.67 ┆ -4.18 ┆ 0.245 │
│ hp ┆ +68.56286848932059 ┆ -3.19 ┆ 1.55 ┆ … ┆ 0.0502 ┆ 4.32 ┆ -6.39 ┆ 0.00315 │
│ hp ┆ +68.56286848932059 ┆ -2.9 ┆ 0.911 ┆ … ┆ 0.00401 ┆ 7.96 ┆ -4.78 ┆ -1.02 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ hp ┆ +68.56286848932059 ┆ -1.32 ┆ 0.925 ┆ … ┆ 0.168 ┆ 2.57 ┆ -3.22 ┆ 0.594 │
│ hp ┆ +68.56286848932059 ┆ -2.2 ┆ 1.15 ┆ … ┆ 0.0671 ┆ 3.9 ┆ -4.57 ┆ 0.167 │
│ hp ┆ +68.56286848932059 ┆ -0.432 ┆ 0.933 ┆ … ┆ 0.648 ┆ 0.626 ┆ -2.36 ┆ 1.49 │
│ hp ┆ +68.56286848932059 ┆ -2.18 ┆ 1.14 ┆ … ┆ 0.068 ┆ 3.88 ┆ -4.53 ┆ 0.174 │
└──────┴────────────────────┴──────────┴───────────┴───┴─────────┴───────┴───────┴─────────┘
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
The comparisons()
function also allows users to specify arbitrary functions of predictions, with the comparison
argument. For example, what is the average ratio between predicted Miles per Gallon after an increase of 50 units in Horsepower?
comparisons(
mod,
variables = list(hp = 50),
comparison = "ratioavg")
Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
hp mean(+50) 0.91 0.0291 31.3 <0.001 711.9 0.853 0.966
Columns: term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted
Type: response
cmp = comparisons(
mod,= {"hp": 50},
variables = "ratioavg")
comparison print(cmp)
shape: (1, 9)
┌──────┬──────────┬──────────┬───────────┬───┬─────────┬─────┬──────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪══════════╪══════════╪═══════════╪═══╪═════════╪═════╪══════╪═══════╡
│ hp ┆ +50 ┆ 0.91 ┆ 0.0291 ┆ … ┆ 0 ┆ inf ┆ 0.85 ┆ 0.97 │
└──────┴──────────┴──────────┴───────────┴───┴─────────┴─────┴──────┴───────┘
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
See the Comparisons vignette for detailed explanations and more options.
The slopes()
function allows us to compute the partial derivative of the outcome equation with respect to each of the predictors. Once again, we obtain a data frame with 96 rows:
[1] 96
mfx
Term Contrast Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
am 1 - 0 0.325 1.68 0.193 0.8467 0.2 -2.97 3.622
am 1 - 0 -0.544 1.57 -0.347 0.7287 0.5 -3.62 2.530
am 1 - 0 1.201 2.35 0.511 0.6090 0.7 -3.40 5.802
am 1 - 0 -1.703 1.87 -0.912 0.3618 1.5 -5.36 1.957
am 1 - 0 -0.615 1.68 -0.366 0.7146 0.5 -3.91 2.680
--- 86 rows omitted. See ?avg_slopes and ?print.marginaleffects ---
wt dY/dX -6.518 1.88 -3.462 <0.001 10.9 -10.21 -2.827
wt dY/dX -1.653 3.74 -0.442 0.6588 0.6 -8.99 5.683
wt dY/dX -4.520 2.47 -1.830 0.0673 3.9 -9.36 0.321
wt dY/dX 0.635 4.89 0.130 0.8966 0.2 -8.95 10.215
wt dY/dX -6.647 1.86 -3.571 <0.001 11.5 -10.29 -2.999
Columns: rowid, term, contrast, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted, mpg, hp, wt, am
Type: response
= slopes(mod)
mfx
mfx.shape
(96, 25)
print(mfx)
shape: (96, 9)
┌──────┬──────────┬──────────┬───────────┬───┬──────────┬───────┬─────────┬─────────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪══════════╪══════════╪═══════════╪═══╪══════════╪═══════╪═════════╪═════════╡
│ wt ┆ dY/dX ┆ -6.61 ┆ 1.87 ┆ … ┆ 0.00164 ┆ 9.25 ┆ -10.5 ┆ -2.76 │
│ wt ┆ dY/dX ┆ -6.61 ┆ 1.87 ┆ … ┆ 0.00165 ┆ 9.25 ┆ -10.5 ┆ -2.76 │
│ wt ┆ dY/dX ┆ -7.16 ┆ 1.8 ┆ … ┆ 0.000558 ┆ 10.8 ┆ -10.9 ┆ -3.45 │
│ wt ┆ dY/dX ┆ -3.21 ┆ 2.01 ┆ … ┆ 0.123 ┆ 3.02 ┆ -7.35 ┆ 0.939 │
│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
│ hp ┆ dY/dX ┆ -0.0192 ┆ 0.014 ┆ … ┆ 0.184 ┆ 2.44 ┆ -0.0481 ┆ 0.00976 │
│ hp ┆ dY/dX ┆ -0.0321 ┆ 0.0173 ┆ … ┆ 0.0761 ┆ 3.72 ┆ -0.0678 ┆ 0.00363 │
│ hp ┆ dY/dX ┆ -0.0063 ┆ 0.0151 ┆ … ┆ 0.68 ┆ 0.556 ┆ -0.0375 ┆ 0.0249 │
│ hp ┆ dY/dX ┆ -0.0318 ┆ 0.0231 ┆ … ┆ 0.182 ┆ 2.45 ┆ -0.0795 ┆ 0.016 │
└──────┴──────────┴──────────┴───────────┴───┴──────────┴───────┴─────────┴─────────┘
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
1.3 Grid
Predictions, comparisons, and slopes are typically “conditional” quantities which depend on the values of all the predictors in the model. By default, marginaleffects
functions estimate quantities of interest for the empirical distribution of the data (i.e., for each row of the original dataset). However, users can specify the exact values of the predictors they want to investigate by using the newdata
argument.
newdata
accepts data frames, shortcut strings, or a call to the datagrid()
function. For example, to compute the predicted outcome for a hypothetical car with all predictors equal to the sample mean or median, we can do:
predictions(mod, newdata = "mean")
Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 % hp wt am
18.4 0.68 27 <0.001 531.7 17 19.7 147 3.22 0.406
Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, mpg, hp, wt, am
Type: response
predictions(mod, newdata = "median")
Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 % hp wt am
19.4 0.646 30 <0.001 653.2 18.1 20.6 123 3.33 0
Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, mpg, hp, wt, am
Type: response
= predictions(mod, newdata = "mean")
p print(p)
shape: (1, 7)
┌──────────┬───────────┬─────┬─────────┬─────┬──────┬───────┐
│ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞══════════╪═══════════╪═════╪═════════╪═════╪══════╪═══════╡
│ 18.4 ┆ 0.68 ┆ 27 ┆ 0 ┆ inf ┆ 17 ┆ 19.8 │
└──────────┴───────────┴─────┴─────────┴─────┴──────┴───────┘
Columns: rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
= predictions(mod, newdata = "median")
p print(p)
shape: (1, 7)
┌──────────┬───────────┬─────┬─────────┬─────┬──────┬───────┐
│ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞══════════╪═══════════╪═════╪═════════╪═════╪══════╪═══════╡
│ 19.4 ┆ 0.646 ┆ 30 ┆ 0 ┆ inf ┆ 18 ┆ 20.7 │
└──────────┴───────────┴─────┴─────────┴─────┴──────┴───────┘
Columns: rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb
The datagrid
function gives us a powerful way to define a grid of predictors. All the variables not mentioned explicitly in datagrid()
are fixed to their mean or mode:
predictions(
mod,
newdata = datagrid(
am = c(0, 1),
wt = range))
am wt Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 % hp
0 1.51 23.3 2.71 8.60 <0.001 56.7 17.96 28.6 147
0 5.42 12.8 2.98 4.30 <0.001 15.8 6.96 18.6 147
1 1.51 27.1 2.85 9.52 <0.001 69.0 21.56 32.7 147
1 5.42 5.9 5.81 1.01 0.31 1.7 -5.50 17.3 147
Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, mpg, hp, am, wt
Type: response
= predictions(
p
mod,= datagrid(
newdata
mod,= [0, 1],
am = [mtcars["wt"].min(), mtcars["wt"].max()]))
wt print(p)
shape: (4, 7)
┌──────────┬───────────┬──────┬──────────┬──────┬──────┬───────┐
│ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞══════════╪═══════════╪══════╪══════════╪══════╪══════╪═══════╡
│ 23.3 ┆ 2.71 ┆ 8.6 ┆ 8.65e-09 ┆ 26.8 ┆ 17.7 ┆ 28.8 │
│ 12.8 ┆ 2.98 ┆ 4.3 ┆ 0.000249 ┆ 12 ┆ 6.65 ┆ 18.9 │
│ 27.1 ┆ 2.85 ┆ 9.52 ┆ 1.27e-09 ┆ 29.5 ┆ 21.3 ┆ 33 │
│ 5.9 ┆ 5.81 ┆ 1.01 ┆ 0.32 ┆ 1.64 ┆ -6.1 ┆ 17.9 │
└──────────┴───────────┴──────┴──────────┴──────┴──────┴───────┘
Columns: rowid, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, am, wt, rownames, mpg, cyl, disp, hp, drat, qsec, vs, gear, carb
The same mechanism is available in comparisons()
and slopes()
. To estimate the partial derivative of mpg
with respect to wt
, when am
is equal to 0 and 1, while other predictors are held at their means:
Term am Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
wt 0 -2.68 1.42 -1.89 0.0593 4.1 -5.46 0.106
wt 1 -5.43 2.15 -2.52 0.0116 6.4 -9.65 -1.214
Columns: rowid, term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, am, predicted_lo, predicted_hi, predicted, mpg, hp, wt
Type: response
= slopes(
s
mod,= "wt",
variables = datagrid(mod, am = [0, 1]))
newdata print(s)
shape: (2, 9)
┌──────┬──────────┬──────────┬───────────┬───┬─────────┬──────┬───────┬────────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪══════════╪══════════╪═══════════╪═══╪═════════╪══════╪═══════╪════════╡
│ wt ┆ dY/dX ┆ -2.68 ┆ 1.42 ┆ … ┆ 0.072 ┆ 3.8 ┆ -5.61 ┆ 0.258 │
│ wt ┆ dY/dX ┆ -5.43 ┆ 2.15 ┆ … ┆ 0.0186 ┆ 5.75 ┆ -9.87 ┆ -0.993 │
└──────┴──────────┴──────────┴───────────┴───┴─────────┴──────┴───────┴────────┘
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, am, rownames, mpg, cyl, disp, hp, drat, wt, qsec, vs, gear, carb
We can also plot how predictions, comparisons, or slopes change across different values of the predictors using three powerful plotting functions:
-
plot_predictions
: Conditional Adjusted Predictions -
plot_comparisons
: Conditional Comparisons -
plot_slopes
: Conditional Marginal Effects
For example, this plot shows the outcomes predicted by our model for different values of the wt
and am
variables:
plot_predictions(mod, condition = list("hp", "wt" = "threenum", "am"))
This plot shows how the derivative of mpg
with respect to am
varies as a function of wt
and hp
:
plot_slopes(mod, variables = "am", condition = list("hp", "wt" = "minmax"))
See this vignette for more information: Plots, interactions, predictions, contrasts, and slopes
1.4 Averaging
Since predictions, comparisons, and slopes are conditional quantities, they can be a bit unwieldy. Often, it can be useful to report a one-number summary instead of one estimate per observation. Instead of presenting “conditional” estimates, some methodologists recommend reporting “marginal” estimates, that is, an average of unit-level estimates.
(This use of the word “marginal” as “averaging” should not be confused with the term “marginal effect” which, in the econometrics tradition, corresponds to a partial derivative, or the effect of a “small/marginal” change.)
To marginalize (average over) our unit-level estimates, we can use the by
argument or the one of the convenience functions: avg_predictions()
, avg_comparisons()
, or avg_slopes()
. For example, both of these commands give us the same result: the average predicted outcome in the mtcars
dataset:
avg_predictions(mod)
Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
20.1 0.39 51.5 <0.001 Inf 19.3 20.9
Columns: estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
Type: response
= avg_predictions(mod)
p print(p)
shape: (1, 7)
┌──────────┬───────────┬──────┬─────────┬─────┬──────┬───────┐
│ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞══════════╪═══════════╪══════╪═════════╪═════╪══════╪═══════╡
│ 20.1 ┆ 0.39 ┆ 51.5 ┆ 0 ┆ inf ┆ 19.3 ┆ 20.9 │
└──────────┴───────────┴──────┴─────────┴─────┴──────┴───────┘
Columns: estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
This is equivalent to manual computation by:
The main marginaleffects
functions all include a by
argument, which allows us to marginalize within sub-groups of the data. For example,
avg_comparisons(mod, by = "am")
Term Contrast am Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
am mean(1) - mean(0) 0 -1.3830 2.5250 -0.548 0.58388 0.8 -6.3319 3.56589
am mean(1) - mean(0) 1 1.9029 2.3086 0.824 0.40980 1.3 -2.6219 6.42773
hp mean(+1) 0 -0.0343 0.0159 -2.160 0.03079 5.0 -0.0654 -0.00317
hp mean(+1) 1 -0.0436 0.0213 -2.050 0.04039 4.6 -0.0854 -0.00191
wt mean(+1) 0 -2.4799 1.2316 -2.014 0.04406 4.5 -4.8939 -0.06595
wt mean(+1) 1 -6.0718 1.9762 -3.072 0.00212 8.9 -9.9451 -2.19846
Columns: term, contrast, am, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, predicted_lo, predicted_hi, predicted
Type: response
cmp = avg_comparisons(mod, by = "am")
print(cmp)
shape: (6, 10)
┌─────┬──────┬───────────────────┬──────────┬───┬─────────┬───────┬─────────┬──────────┐
│ am ┆ Term ┆ Contrast ┆ Estimate ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞═════╪══════╪═══════════════════╪══════════╪═══╪═════════╪═══════╪═════════╪══════════╡
│ 1 ┆ hp ┆ +1 ┆ -0.0436 ┆ … ┆ 0.0515 ┆ 4.28 ┆ -0.0876 ┆ 0.0003 │
│ 0 ┆ hp ┆ +1 ┆ -0.0343 ┆ … ┆ 0.041 ┆ 4.61 ┆ -0.067 ┆ -0.00152 │
│ 1 ┆ wt ┆ +1 ┆ -6.07 ┆ … ┆ 0.00522 ┆ 7.58 ┆ -10.2 ┆ -1.99 │
│ 0 ┆ wt ┆ +1 ┆ -2.48 ┆ … ┆ 0.0554 ┆ 4.17 ┆ -5.02 ┆ 0.0621 │
│ 1 ┆ am ┆ mean(1) - mean(0) ┆ 1.9 ┆ … ┆ 0.418 ┆ 1.26 ┆ -2.86 ┆ 6.67 │
│ 0 ┆ am ┆ mean(1) - mean(0) ┆ -1.38 ┆ … ┆ 0.589 ┆ 0.764 ┆ -6.59 ┆ 3.83 │
└─────┴──────┴───────────────────┴──────────┴───┴─────────┴───────┴─────────┴──────────┘
Columns: am, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Marginal Means are a special case of predictions, which are marginalized (or averaged) across a balanced grid of categorical predictors. To illustrate, we estimate a new model with categorical predictors:
dat <- mtcars
dat$am <- as.logical(dat$am)
dat$cyl <- as.factor(dat$cyl)
mod_cat <- lm(mpg ~ am + cyl + hp, data = dat)
= mtcars \
dat "am").cast(pl.Boolean),
.with_columns(pl.col("cyl").cast(pl.Utf8))
pl.col(= smf.ols('mpg ~ am + cyl + hp', data=dat).fit() mod_cat
We can compute marginal means manually using the functions already described:
avg_predictions(
mod_cat,
newdata = datagrid(cyl = unique, am = unique),
by = "am")
am Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
FALSE 18.3 0.785 23.3 <0.001 397.4 16.8 19.9
TRUE 22.5 0.834 26.9 <0.001 528.6 20.8 24.1
Columns: am, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
Type: response
= avg_predictions(
p
mod_cat,= datagrid(mod_cat, cyl = dat["cyl"].unique(), am = dat["am"].unique()),
newdata = "am")
by print(p)
shape: (2, 8)
┌───────┬──────────┬───────────┬──────┬─────────┬─────┬──────┬───────┐
│ am ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ bool ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞═══════╪══════════╪═══════════╪══════╪═════════╪═════╪══════╪═══════╡
│ true ┆ 22.5 ┆ 0.834 ┆ 26.9 ┆ 0 ┆ inf ┆ 20.8 ┆ 24.2 │
│ false ┆ 18.3 ┆ 0.785 ┆ 23.3 ┆ 0 ┆ inf ┆ 16.7 ┆ 19.9 │
└───────┴──────────┴───────────┴──────┴─────────┴─────┴──────┴───────┘
Columns: am, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
For convenience, the marginaleffects
package for R
also includes a marginal_means()
function:
marginal_means(mod_cat, variables = "am")
Term Value Mean Std. Error z Pr(>|z|) S 2.5 % 97.5 %
am FALSE 18.3 0.785 23.3 <0.001 397.4 16.8 19.9
am TRUE 22.5 0.834 26.9 <0.001 528.6 20.8 24.1
Results averaged over levels of: cyl, am
Columns: term, value, am, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
Type: response
The Marginal Means vignette offers more detail.
1.5 Hypothesis and equivalence tests
The hypotheses()
function and the hypothesis
argument can be used to conduct linear and non-linear hypothesis tests on model coefficients, or on any of the quantities computed by the functions introduced above.
Consider this model:
Can we reject the null hypothesis that the drat
coefficient is 2 times the size of the qsec
coefficient?
hypotheses(mod, "drat = 2 * qsec")
Term Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
drat = 2 * qsec -1.39 10.8 -0.129 0.897 0.2 -22.5 19.7
Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
We can ask the same question but refer to parameters by position, with indices b1
, b2
, b3
, etc.:
hypotheses(mod, "b3 = 2 * b2")
Term Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
b3 = 2 * b2 -1.39 10.8 -0.129 0.897 0.2 -22.5 19.7
Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
= hypotheses(mod, "b3 = 2 * b2")
h print(h)
shape: (1, 8)
┌─────────┬──────────┬───────────┬────────┬─────────┬───────┬───────┬───────┐
│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞═════════╪══════════╪═══════════╪════════╪═════════╪═══════╪═══════╪═══════╡
│ b3=2*b2 ┆ -1.39 ┆ 10.8 ┆ -0.129 ┆ 0.898 ┆ 0.155 ┆ -23.5 ┆ 20.7 │
└─────────┴──────────┴───────────┴────────┴─────────┴───────┴───────┴───────┘
Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
The main functions in marginaleffects
all have a hypothesis
argument, which means that we can do complex model testing. For example, consider two slope estimates:
Term qsec Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
drat 14.5 5.22 3.80 1.38 0.1690 2.6 -2.221 12.7
drat 22.9 10.24 5.15 1.99 0.0469 4.4 0.142 20.3
Columns: rowid, term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, qsec, predicted_lo, predicted_hi, predicted, mpg, drat
Type: response
= slopes(
s
mod,= "drat",
variables = datagrid(mod, qsec = [mtcars["qsec"].min(), mtcars["qsec"].max()]))
newdata print(s)
shape: (2, 9)
┌──────┬──────────┬──────────┬───────────┬───┬─────────┬──────┬────────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪══════════╪══════════╪═══════════╪═══╪═════════╪══════╪════════╪═══════╡
│ drat ┆ dY/dX ┆ 5.22 ┆ 3.8 ┆ … ┆ 0.18 ┆ 2.47 ┆ -2.56 ┆ 13 │
│ drat ┆ dY/dX ┆ 10.2 ┆ 5.16 ┆ … ┆ 0.0573 ┆ 4.13 ┆ -0.338 ┆ 20.8 │
└──────┴──────────┴──────────┴───────────┴───┴─────────┴──────┴────────┴───────┘
Columns: rowid, term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, predicted, predicted_lo, predicted_hi, qsec, rownames, mpg, cyl, disp, hp, drat, wt, vs, am, gear, carb
Are these two slopes significantly different from one another? To test this, we can use the hypothesis
argument:
= slopes(
s
mod,= "b1 = b2",
hypothesis = "drat",
variables = datagrid(mod, qsec = [mtcars["qsec"].min(), mtcars["qsec"].max()]))
newdata print(s)
shape: (1, 8)
┌───────┬──────────┬───────────┬────────┬─────────┬───────┬───────┬───────┐
│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞═══════╪══════════╪═══════════╪════════╪═════════╪═══════╪═══════╪═══════╡
│ b1=b2 ┆ -5.02 ┆ 8.53 ┆ -0.588 ┆ 0.561 ┆ 0.834 ┆ -22.5 ┆ 12.5 │
└───────┴──────────┴───────────┴────────┴─────────┴───────┴───────┴───────┘
Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Alternatively, we can also refer to values with term names (when they are unique):
avg_slopes(mod)
Term Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
drat 7.22 1.365 5.29 < 0.001 23.0 4.549 9.90
qsec 1.12 0.433 2.60 0.00942 6.7 0.276 1.97
Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
Type: response
avg_slopes(mod, hypothesis = "drat = qsec")
Term Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
drat=qsec 6.1 1.45 4.2 <0.001 15.2 3.25 8.95
Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
Type: response
= avg_slopes(mod)
s print(s)
shape: (2, 9)
┌──────┬─────────────┬──────────┬───────────┬───┬──────────┬──────┬───────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪═════════════╪══════════╪═══════════╪═══╪══════════╪══════╪═══════╪═══════╡
│ drat ┆ mean(dY/dX) ┆ 7.22 ┆ 1.37 ┆ … ┆ 1.25e-05 ┆ 16.3 ┆ 4.43 ┆ 10 │
│ qsec ┆ mean(dY/dX) ┆ 1.12 ┆ 0.432 ┆ … ┆ 0.0147 ┆ 6.09 ┆ 0.239 ┆ 2.01 │
└──────┴─────────────┴──────────┴───────────┴───┴──────────┴──────┴───────┴───────┘
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
= avg_slopes(mod, hypothesis = "drat = qsec")
s print(s)
shape: (1, 8)
┌───────────┬──────────┬───────────┬─────┬──────────┬─────┬──────┬───────┐
│ Term ┆ Estimate ┆ Std.Error ┆ z ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞═══════════╪══════════╪═══════════╪═════╪══════════╪═════╪══════╪═══════╡
│ drat=qsec ┆ 6.1 ┆ 1.45 ┆ 4.2 ┆ 0.000245 ┆ 12 ┆ 3.13 ┆ 9.07 │
└───────────┴──────────┴───────────┴─────┴──────────┴─────┴──────┴───────┘
Columns: term, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high
Now, imagine that for theoretical (or substantive or clinical) reasons, we only care about slopes larger than 2. We can use the equivalence
argument to conduct an equivalence test:
avg_slopes(mod, equivalence = c(-2, 2))
Term Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 % p (NonSup) p (NonInf) p (Equiv)
drat 7.22 1.365 5.29 < 0.001 23.0 4.549 9.90 0.9999 <0.001 0.9999
qsec 1.12 0.433 2.60 0.00942 6.7 0.276 1.97 0.0215 <0.001 0.0215
Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, statistic.noninf, statistic.nonsup, p.value.noninf, p.value.nonsup, p.value.equiv
Type: response
= avg_slopes(mod, equivalence = [-2., 2.])
s print(s)
shape: (2, 9)
┌──────┬─────────────┬──────────┬───────────┬───┬──────────┬──────┬───────┬───────┐
│ Term ┆ Contrast ┆ Estimate ┆ Std.Error ┆ … ┆ P(>|z|) ┆ S ┆ 2.5% ┆ 97.5% │
│ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ str ┆ ┆ str ┆ str ┆ str ┆ str │
╞══════╪═════════════╪══════════╪═══════════╪═══╪══════════╪══════╪═══════╪═══════╡
│ drat ┆ mean(dY/dX) ┆ 7.22 ┆ 1.37 ┆ … ┆ 1.25e-05 ┆ 16.3 ┆ 4.43 ┆ 10 │
│ qsec ┆ mean(dY/dX) ┆ 1.12 ┆ 0.432 ┆ … ┆ 0.0147 ┆ 6.09 ┆ 0.239 ┆ 2.01 │
└──────┴─────────────┴──────────┴───────────┴───┴──────────┴──────┴───────┴───────┘
Columns: term, contrast, estimate, std_error, statistic, p_value, s_value, conf_low, conf_high, statistic_noninf, statistic_nonsup, p_value_noninf, p_value_nonsup, p_value_equiv
See the Hypothesis Tests and Custom Contrasts vignette for background, details, and for instructions on how to conduct hypothesis tests in more complex situations.
1.6 More!
There is much more you can do with marginaleffects
. Click through he Table of Contents to read the vignettes, learn how to report marginal effects in nice tables with the modelsummary
package, how to define your own prediction “grid”, and much more. ****